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Abstract

We discuss posterior sampling for two distinct multivariate generalizations of the univariate ARIMA

model with fractional integration. The existing approach to Bayesian estimation, introduced by Rav-

ishanker and Ray (1997), claims to provide a posterior-sampling algorithm for fractionally integrated

vector autoregressive moving averages (FIVARMAs). We show that this algorithm produces posterior

draws for vector autoregressive fractionally integrated moving averages (VARFIMAs), a model of inde-

pendent interest that has not previously received attention in the Bayesian literature.
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1. Introduction. Ravishanker and Ray (1997) provide the �rst attempt at using Bayesian methods to

estimate a multivariate fractionally integrated ARIMA model. However, we will show that Ravishanker and

Ray's inferential procedure corresponds to a model that's di�erent from the one they specify. Below, we

will discuss two distinct multivariate generalizations of the fractional ARIMA model that have substantially

di�erent properties: the FIVARMA and the VARFIMA. Ravishanker and Ray seek to estimate the former,

but their procedure produces estimates for the latter. In this note, we make two contributions. The �rst

is simply to correct an error in the literature. The second contribution is to show that an algorithm that

was intended to estimate FIVARMA processes can be modi�ed to estimate certain VARFIMA processes, a

distinct class of models of independent interest. This insight is potentially useful, because we are unaware

of other papers that discuss Bayesian VARFIMA estimation. In a companion paper, Doppelt and O'Hara

(2018), we develop new methods for Bayesian estimation of certain FIVARMA models.

2. Models. Let xt be an n × 1 vector with mean zero. Let L denote the lag operator, and de�ne

Φ (L) ≡ In −
∑p

`=1 Φ`L
`, Θ (L) ≡ In +

∑q
`=1 Θ`L

`, and D (L) ≡ diag
(
(1− L)

d1 , · · · , (1− L)
dn

)
. First,

consider the fractionally integrated vector autoregressive moving average (FIVARMA) model:

Φ (L)D (L)xt = Θ (L) εt, εt
i.i.d.∼ N (0n×1,Σ) . (1)

Alternatively, consider the vector autoregressive fractionally integrated moving average (VARFIMA) model:

D (L)Φ (L)xt = Θ (L) εt, εt
i.i.d.∼ N (0n×1,Σ) . (2)

Assuming that Φ (L) is not diagonal, Lobato (1997) shows that the FIVARMA and VARFIMA models will

only coincide when d1 = · · · = dn. The distinction is important. In the FIVARMA model, each series can

have a di�erent order of integration: xi,t ∼ I (di). But in the VARFIMA model, each series will have the

same order of integration, even if the di are distinct: xi,t ∼ I (max1≤k≤n {dk}). Ravishanker and Ray (1997)

claim to perform Bayesian estimation of (1). We will show that their sampling algorithm requires q = 0, and

then, it actually produces draws from the posterior distribution of (2). When q = 0, we will refer to (1) as

a FIVAR and (2) as a VARFI, following Sela and Hurvich (2009).

3. Representation and Inference. Let XT ≡ (x′1, . . . ,x
′
T )
′
be the observed sample, and let θ be the pa-

rameters. To estimate (1), Ravishanker and Ray (1997) de�ne at ≡ D (L)
−1

εt and propose a change of vari-

ables based on the representation Φ (L)xt = Θ (L)at. This approach is motivated by the fact that the ACF

of at is easier to compute than the ACF of xt. If Φ (L)xt = Θ (L)at, then
(
X′−p,A

′
−q,A

′
T

)′
is a linear trans-

formation of
(
X′−p,A

′
−q,X

′
T

)′
with unit Jacobian, where X−p ≡

(
x′−p+1, . . . ,x

′
0

)′
, A−q ≡

(
a′−q+1, . . . ,a

′
0

)′
,
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and AT ≡ (a′1, . . . ,a
′
T )
′
. Thus, P [X−p,A−q,XT | θ] = P [X−p,A−q,AT | θ]. Ravishanker and Ray's pos-

terior sampler treats X−p and A−q as latent variables. Letting A∗ ≡
(
A′−q,A

′
T

)′
, the posterior kernel

therefore takes the form P [θ,X−p,A−q | XT ] ∝ P [X−p | A∗,θ]P [A∗ | θ]P [θ]. It's feasible to compute

P [X−p | A∗,θ] and P [A∗ | θ], because
(
X′−p,A

′
∗
)′
are jointly Gaussian, and Ravishanker and Ray provide

recursions for computing the covariance matrix. Conditional on the data adhering to the representation

Φ (L)xt = Θ (L)at, with at ≡ D (L)
−1

εt, Ravishanker and Ray's calculations are correct.

However, applying D (L)
−1

to both sides of equation (1) does not yield Φ (L)xt = Θ (L)at, because the

matrix-valued lag polynomials do not, in general, commute. If we apply the operator D (L)
−1

to both sides

of equation (2), then we do obtain Φ (L)xt = Θ (L)at in the particular case where Θ (L) = In. Hence, one

can apply the Ravishanker-Ray algorithm to multivariate models when q = 0, as long as one recognizes that

the estimates correspond to a VARFI model, not a FIVAR model. Alternatively, one could directly specify

Φ (L)xt = Θ (L)D (L)
−1

εt as the data-generating process; in that case, the low-frequency properties of the

model would resemble a VARFIMA, in the sense that all variables would have the same order of integration,

given by the maximal element of {di}ni=1.

4. Discussion. Whether it's preferable to �t (1) or (2) depends on the application. For example, in Doppelt

and O'Hara (2018), we use a Bayesian FIVAR to analyze a dataset with evidence of fractional integration

in some series, but not others, so a VARFI would be inappropriate. Alternatively, Sela and Hurvich (2009)

examine two in�ation indices using frequentist methods and �nd that a VARFI �ts better than a FIVAR.

The Bayesian literature has not given as extensive consideration to these classes of models, partly because

sampling algorithms for VARFIs have remained an open question. However, by using Ravishanker and Ray's

algorithm that was initially developed for FIVARs, one can perform posterior inference for VARFIs.
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