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Abstract

We introduce a new method for Bayesian estimation of fractionally integrated vector autoregressions

(FIVARs). The FIVAR, which nests a standard VAR as a special case, allows each series to exhibit

long memory, meaning that low frequencies can play a dominant role � a salient feature of many

macroeconomic and �nancial time series. Although the parameter space is typically high-dimensional,

our inferential procedure is computationally tractable and relatively easy to implement. We apply our

methodology to the identi�cation of technology shocks, an empirical problem in which business-cycle

predictions depend on carefully accounting for low-frequency �uctuations.
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1 Introduction

Bayesian vector autoregressions (VARs) are common tools for empirical macroeconomics. As surveyed by

Del Negro and Schorfheide (2011) and Koop and Korobilis (2010), the literature on Bayesian VARs has

produced valuable methods for describing data, producing forecasts, and identifying structural shocks. We

build on this body of work by providing a computationally tractable method for Bayesian estimation of

fractionally integrated VARs (FIVARs). Traditionally, VAR practitioners allow variables to enter in levels

or di�erences. In a FIVAR, the jth variable in the VAR has been di�erenced δj times � where δj need not

be an integer � and these di�erencing parameters are estimated simultaneously with the VAR parameters,

rather than imposed ex ante. This parsimonious modi�cation of a standard VAR can have a substantial

e�ect on the dynamics of the system. Fractionally integrated series can exhibit long memory, meaning that

the correlation between a variable and its own lags decays extremely slowly relative to a VAR. In practice,

this statistical property of the model can have substantive implications for the identi�cation of economic

shocks.

Why generalize the VAR to include fractional integration, and why take a Bayesian approach to doing

so? A number of econometricians have argued for the relevance of long-memory models. Henry and Za�aroni

(2003) survey the literature and contend that the long-memory paradigm provides a natural framework for

approaching both macro and �nancial time series. In �nance, where many series are observed on a daily

basis, fractionally integrated models have proven their utility.1 In macro, where time series are shorter, we

need to investigate the data more carefully. Although many macroeconomic variables appear persistent,

sample size is a legitimate concern: Accumulating information about low-frequency oscillations is inherently

slow, so frequentist estimators may perform poorly with only 60 years of data. This fact has lead some

macroeconometricans to view fractional integration with skepticism.2 We're going to take the fractional-

integration hypothesis seriously, but from a Bayesian perspective. With Bayesian VARs, it's common to

�t densely parameterized models, coupled with an informative prior that shrinks most of the coe�cients

toward zero. That way, the model entertains the possibility of correlations across many variables at many

lags, but only if the likelihood contains enough evidence to overcome the prior. We approach FIVARs in

the same spirit. Shrinking the di�erencing parameters toward zero provides a clean and transparent way of

1For example, in their seminal studies of realized volatility, Andersen et al. (2001, 2003) argue that a Gaussian FIVAR
�ts their data well. Working with univariate models, Bhardwaj and Swanson (2006) �nd that fractionally integrated ARIMA
models do a good job of forecasting many �nancial time series. See Baillie (1996) for a review of earlier work.

2One prominent skeptic was Granger (1997): �The I (1) assumption can be replaced by I (d) where d is a fraction, so that
some of the variables are fractionally integrated. Outside of some special cases in �nance, I do not think that this is an especially
plausible class of models to consider and am not convinced that they have been widely discovered in practice in macrodata.�
(p. 173) In his conclusion, though, he remarks: �Use of non-numerical information, such as personal beliefs or experiences
as suggested by the Bayesians should be considered, has also been known to produce some disagreement. I personally lack
su�cient self con�dence to be a formal Bayesian, stating a speci�c prior, but am happy that not everyone has this personal
characteristic.� (p. 175)

2



encoding skepticism toward fractional integration, while still allowing the data to update our beliefs. Our

priors are centered on a conventional VAR, but in our applied work, our posteriors indicate that fractional

integration helps account for low-frequency variation in key macroeconomic variables, such as in�ation and

interest rates.

Methodologically, our main contribution is to provide the �rst computationally viable algorithm for

Bayesian estimation of FIVARs. Frequentist estimates of FIVARs are often based on maximum likelihood

or, more commonly, quasi-maximum likelihood.3 In the Bayesian literature, several authors have proposed

sampling algorithms for univariate ARIMA(p, d, q) processes with non-integer values of d.4 Unfortunately,

extending these methods to multivariate systems is not straightforward. Although Ravishanker and Ray

(1997, 2002) claim to provide a posterior sampler for FIVAR processes, their approach actually produces

estimates for a di�erent class of fractionally integrated models, with di�erent low-frequency properties.5

In addition, they use a variant of the random-walk Metropolis-Hastings algorithm, and posterior sampling

will typically be more e�cient if any of the conditional distributions have a conjugate (or approximately

conjugate) form.

Given the growing popularity of Bayesian methods, we suspect that computational barriers are a major

reason why empirical macroeconomists have been slow to adopt fractionally integrated models. In princi-

ple, one could use a generic sampling algorithm, such as Metropolis-Hastings, to draw from the posterior.

However, Bayesian estimation of VARs (and, by extension, FIVARs) usually involves a large number of

parameters, so it's advantageous to exploit the structure of the model to construct an e�cient sampler.

Using frequency-domain methods, we begin by formulating an approximation to the posterior that has a

semi-conjugate form: Conditional on the di�erencing parameters, the autoregressive coe�cients and inno-

vation variances have a normal-Wishart structure. Hence, we can marginalize over the VAR parameters

and sample from the (low-dimensional) distribution of di�erencing parameters. Then, given the di�erenc-

ing parameters, we can draw the VAR parameters directly from the normal-Wishart distribution. Using a

sequential importance sampler, along the lines of Herbst and Schorfheide (2014, 2015), we also discuss how

to reweight draws from the approximate posterior to perform exact posterior inference. It turns out that

the approximate posterior, besides being easy to implement, is often close to the exact posterior. This fact

greatly reduces the computational burden of exact posterior inference.

We apply our methodology to study technology shocks. The identi�cation of technology shocks using

3Sowell (1989b) and Sela and Hurvich (2009) discuss exact Gaussian maximum likelihood. Hosoya (1996, 1997) provides the
theory for quasi-maximum likelihood based on Whittle's frequency-domain approximation.

4Examples include Koop et al. (1997), Pai and Ravishanker (1998), Hsu and Breidt (2003), and Graves et al. (2015).
5We discuss the issues with Ravishanker and Ray's method in a separate note; see Doppelt and O'Hara (2018). In general,

the class of models for which the Ravishanker-Ray algorithm produces posterior draws will not coincide with a FIVAR except
in the special case where all variables are assumed to have the same order of fractional integration.

3



VARs has generated some controversy � and the central point of contention is the modeling of low-frequency

patterns. Building on Blanchard and Quah (1989), Galí (1999) uses long-run restrictions in a VAR: He argues

that total-factor productivity (TFP) shocks are the only shocks that have permanent e�ects on output per

hour. In stark contrast to the predictions of real-business-cycle theory, Galí �nds that a positive technology

shock has a negative e�ect on hours of work. Christiano et al. (2003) approach the same problem with the

same identifying assumptions, but reach the opposite conclusion. Apparently, if hours enter the VAR in

di�erences (Galí's preferred speci�cation), then positive TFP shocks cause hours to go down; if hours enter

the VAR in levels (Christiano et al.'s preferred speci�cation), then positive TFP shocks cause hours to go

up.

In other words, a VAR's implications for technology shocks hinge critically on the order of integration.6

A FIVAR is therefore a natural alternative: We can estimate the VAR parameters simultaneously with

each variable's order of integration, without constraining it to be exactly zero or one. Indeed, our empirical

results suggest that several of our models' variables are fractionally integrated. Gil-Alana and Moreno (2009)

and Lovcha and Perez-Laborda (2015) also investigate technology shocks with FIVARs, but our work di�ers

from theirs in several key respects. First, their papers approach an interesting macroeconomic question using

well-established frequentist methods, whereas we introduce a new Bayesian method. Frequentist estimators

can produce imprecise estimates with large systems, and those authors focus on bivariate models, although

Lovcha and Perez-Laborda also �t a three-variable model as a robustness check. Second, because our method

is better suited to large systems, we analyze more than one type of technology shock. Following Fisher (2006),

we identify investment-speci�c technology (IST) shocks, as well as TFP shocks. It's assumed that only IST

shocks have a permanent e�ect on the relative price of investment goods, but both IST and TFP and shocks

have permanent e�ects on output per hour. The FIVAR suggests that an increase in TFP leads to an initial

drop in hours, regardless of whether hours enter in levels or di�erences. For IST shocks, the FIVAR and

the VAR produce substantially di�erent impulse responses. Following a decline in IST, the VAR predicts

an immediate drop in output driven entirely by a drop in hours; the FIVAR predicts a delayed decline in

output coming from a gradual fall in productivity, with hours staying nearly constant.

We will proceed as follows. Section 2 introduces the FIVAR model. We outline our estimation strategy

in Section 3, and we discuss sampling algorithms in Section 4. Section 5 contains the empirical application

on technology shocks. Section 6 concludes. All proofs are in Appendix A; supplementary results are in

Appendix B. Throughout, we will use an asterisks (∗) to denote the conjugate transpose, and a prime (′) to

6More generally, the results depend on the speci�cation of low-frequency movements. See Fernald (2007) for a discussion.
Francis and Ramey (2009) advocate using an alternative measure of hours that accounts for the demographic composition of
the labor force. E�ectively, accounting for slow-moving demographic trends alters the low-frequency properties of the data, and
those authors �nd that positive TFP shocks depress hours.
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denote the standard (non-conjugate) transpose.

2 The FIVAR Model

For an n× 1 vector xt ≡ (x1,t, . . . , xn,t)
′
, a Gaussian FIVAR process assumes the form:

A (L) D (L) xt = et, et
i.i.d.∼ N

(
0n×1,Q

−1
e

)
, (2.1)

where L is the lag operator, A (L) is an mth-order lag polynomial, and D (L) is a diagonal matrix of

fractional-di�erencing operators:

A (L) ≡ In −
m∑
`=1

A`L
`, D (L) ≡ diag

(
(1− L)

δ1 , · · · , (1− L)
δn
)
. (2.2)

That is, D (L) xt follows a VAR(m), and the jth element of D (L) xt is (1− L)
δj xj,t. If δj is an integer,

then (1− L)
δj xj,t is just the δ

th
j di�erence of xj,t, and we can write the di�erencing operator in terms of its

binomial expansion:

(1− L)
δj =

δj∑
`=0

(−1)
`

(
δj
`

)
L`. (2.3)

If δj is not an integer, then this operator is de�ned directly in terms of its binomial expansion, replacing the

factorial with the Gamma function:

(1− L)
δj =

∞∑
`=0

Γ (`− δj)
Γ (`+ 1) Γ (−δj)

L`. (2.4)

Now, with δj no longer an integer, this polynomial contains an in�nite number of lags. For xt to be stationary

and invertible, it's necessary that each δj falls in the interval
(
− 1

2 ,
1
2

)
. (As with a VAR, stationarity for the

FIVAR also requires all roots of the polynomial det (A (z)) to fall outside the unit circle.) The series xj,t is

said to exhibit long memory if δj ∈
(
0, 12
)
. In that case, the autocovariance function decays harmonically �

i.e., E [xj,txj,t−`] ∼ O
(
|`|2δj−1

)
� much more slowly than the exponential decay that arises in a standard

VAR model. Long-memory processes are dominated by slow-moving oscillations: At frequency zero, the

power spectral density of xj,t is in�nite. If δj ∈
(
− 1

2 , 0
)
, then xj,t is said to exhibit negative memory.

Then, the autocovariance function decays quickly, and the power spectral density is zero at frequency zero.

Negative memory can arise if, for instance, a series has been over-di�erenced.

Evidently, a FIVAR can accommodate low-frequency dynamics that depart signi�cantly from a VAR. The

cost of this �exibility, in terms of parsimony, is relatively small. When �tting a Bayesian VAR, Litterman
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(1986) suggests including �as long a lag as is computationally feasible, with a prior distribution on the

coe�cients re�ecting the fact that coe�cients on longer lags are more likely to be close to zero.� (p. 28)

In practice, this principle often translates into a year's worth of lags, plus one. With �ve series observed

on a quarterly basis, a VAR would contain 140 parameters; a FIVAR would require just �ve more. The

di�erencing parameters control how quickly the coe�cients in the lag polynomial (2.4) decay to zero. In

that sense, adopting an informative prior over the di�erencing parameters is one way of implementing

Litterman's advice: We're allowing xt to depend on its own in�nite history, but controlling the degree of

dependence.

3 Estimation

First, in Section 3.1, we will discuss Whittle's approximation to the likelihood, and the associated quasi-

posterior, for a general stationary time-series model. Then, in Section 3.2, we will apply this approximation

to the FIVAR model speci�cally. These analytical results set the stage for the exact-posterior sampling

algorithms presented in Section 4. Throughout, we will use the notation p (·) to refer to a generic probability

density.

3.1 A Frequency-Domain Posterior Approximation

Let xt be an n × 1 vector of mean-zero stationary time series. Suppose that xT ≡ {xt}T−1t=0 are jointly

Gaussian, and the autocovariance function of xt is parameterized by a collection of parameters θ. Let

L
(
xT | θ

)
be the associated likelihood function. Given a prior density p (θ), the posterior density for θ is

given by:

p
(
θ | xT

)
=

L
(
xT | θ

)
p (θ)∫

L
(
xT | θ́

)
p
(
θ́
)
dθ́
. (3.1)

A common strategy is to replace the exact time-domain likelihood function with Whittle's frequency-domain

approximation. Denote the discrete Fourier transform (DFT) of xT by zT ≡ {zk}T−1k=0 :

zk ≡
1√
T

T−1∑
t=0

xt exp {−iωkt} , (3.2)
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where ωk ≡ 2πk
T is the kth Fourier frequency. Denote by K ≡ bT/2− 1c the number of non-redundant

Fourier frequencies.7 Whittle's approximation takes the following form:

L
(
xT | θ

)
≈ L̂

(
zT | θ

)
≡

K∏
k=1

π−ndet (f (ωk | θ))−1 exp
{
−z∗kf (ωk | θ)−1 zk

}
, (3.3)

where f (ω | θ) is the spectral density, which is also parameterized by θ. We will refer to L
(
xT | θ

)
as

the time-domain likelihood, and L̂
(
zT | θ

)
as the frequency-domain likelihood. Likewise, we will refer to

p
(
θ | xT

)
as the time-domain posterior, and we will de�ne the frequency-domain posterior as:

p̂
(
θ | xT

)
≡

L̂
(
xT | θ

)
p (θ)∫

L̂
(
xT | θ́

)
p
(
θ́
)
dθ́
. (3.4)

Strictly speaking, only p
(
θ | xT

)
represents the exact posterior distribution, and p̂

(
θ | xT

)
is a quasi-

posterior approximation. However, this formulation is common in the Bayesian time-series literature, be-

cause in many applications, evaluating the frequency-domain likelihood requires much less computing time

(and less coding time) than evaluating the time-domain likelihood.8 Certainly, that's true for the FIVAR

model: The exact likelihood requires calculating the full Tn × Tn variance-covariance matrix, plus its in-

verse and determinant. Nevertheless, to make the sampling problem tractable, we need to do more than

simply replace L
(
xT | θ

)
with L̂

(
xT | θ

)
. In a FIVAR model, θ is typically high-dimensional, so even if the

frequency-domain posterior is less costly to evaluate, it may still be di�cult to maximize or integrate. We

will therefore turn our attention to the speci�c features of the FIVAR model, and how they relate to the

computationally simpler VAR model.

3.2 Approximating the FIVAR Posterior

Assume that xt follows a FIVAR (2.1). Our goal is to form beliefs about the parameters θ ≡
(
δ′, vech (Qe)

′
,a′
)′
,

where we have de�ned:

δ ≡ (δ1, . . . , δn)
′
, a ≡ vec (A) , A ≡

[
A1 · · · Am

]
. (3.5)

Let fFIV AR (ω | θ) denote the spectral density of a FIVAR, and let fV AR (ω | θ) denote the spectral density

of a VAR. By construction, a FIVAR process comes from applying a fractional-integration �lter to a VAR

7Half of the DFT ordinates are redundant, in the sense that z′k = z∗T−k.
8For example, in the econometrics literature, Plagborg-Møller (2016) and Sala (2015) use the frequency-domain posterior

(3.4) to �t structural time-series models without long memory. In the statistics literature, Liseo et al. (2001) and Holan et al.
(2009) use the frequency-domain posterior for Bayesian estimation of univariate long-memory models. Tamaki (2008) proves a
version of the Bernstein-von Mises theorem for the frequency-domain posterior with univariate long-memory processes.
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process. Hence:

fFIV AR (ω | θ) = D (exp {−iω})−1 fV AR (ω | θ) D (exp {−iω})−1∗ . (3.6)

This fact implies a relationship between the frequency-domain likelihood for a FIVAR process, denoted

L̂FIV AR
(
zT | θ

)
, and the frequency-domain likelihood for a VAR process, denoted L̂V AR

(
zT | θ

)
.

Proposition 1. Let z̃T ≡ {z̃k}T−1k=0 with z̃0 ≡ 0n×1 and z̃k ≡ D (exp {−iωk}) zk, k ≥ 1. We can write the

frequency-domain likelihood for the FIVAR process as:

L̂FIV AR
(
zT | θ

)
= κ1

′δL̂V AR
(
z̃T | θ

)
, (3.7)

where κ ≡
∏K
k=1 [2− 2 cos (ωk)].

Proposition 1 suggests a strategy for marginalizing over the VAR parameters to approximate the posterior

distribution of the di�erencing parameters. For a given δ, let x̃T ≡ {x̃t}T−1t=0 be de�ned as the inverse DFT

of z̃T :

x̃t ≡
1√
T

T−1∑
k=0

z̃k exp {iωkt} . (3.8)

Applying equation (3.3) again, we will approximate the frequency-domain VAR likelihood with the corre-

sponding time-domain VAR likelihood:9

L̂V AR
(
z̃T | θ

)
≈ LV AR

(
x̃T | θ

)
=

T−1∏
t=m

(2π)
−n2 det (Qe)

1
2 exp

{
−1

2

(
x̃t −

m∑
`=1

A`x̃t−`

)′
Qe

(
x̃t −

m∑
`=1

A`x̃t−`

)}
.(3.9)

Combining equations (3.7) and (3.9) gives us:

L̂FIV AR
(
zT | θ

)
≈ κ1

′δLV AR
(
x̃T | θ

)
≡ L̃FIV AR

(
x̃T | θ

)
. (3.10)

We will refer to L̃FIV AR
(
x̃T | θ

)
as the hybrid likelihood, because it combines the frequency-domain FIVAR

likelihood with the time-domain VAR likelihood. In turn, we will de�ne the hybrid posterior as:

p̃
(
θ | xT

)
≡

L̃FIV AR
(
x̃T | θ

)
p (θ)∫

L̃FIV AR

(
x̃T | θ́

)
p
(
θ́
)
dθ́
. (3.11)

Like the frequency-domain posterior, the hybrid posterior is only an approximation to the exact, time-domain

posterior. Nevertheless, this formulation has a clear interpretation, and it will be much easier to sample from

9This formulation of the time-domain VAR likelihood conditions on the �rst m observations.
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p̃
(
θ | xT

)
than from p

(
θ | xT

)
. Recall that, to construct z̃k, we multiplied the Fourier transform of the data

zk by the transfer function associated with a fractional-di�erencing �lter D (exp {−iωk}). Consequently, x̃t

is the �nite-sample analogue of D (L) xt, which is a VAR process.10 Likewise, for a �xed value of δ, the

hybrid posterior p̃
(
θ | xT

)
is proportional to LV AR

(
x̃T | θ

)
p (θ). That is, conditional on δ, forming beliefs

about (Qe,a) using the hybrid posterior is equivalent to �tting a Bayesian VAR, taking x̃T as data. This fact

is computationally convenient, because it implies a semi-conjugate prior, as demonstrated by the following

proposition.

Proposition 2. Assume that the prior for (Qe,a) is independent of δ and takes a normal-Wishart form:

Qe ∼ W

(
1

ν
Q̄e, ν

)
(3.12)

a | Qe ∼ N
(
vec
(
Ā
)
,Q−1a ⊗Q−1e

)
. (3.13)

For a given value of δ, let x̃t be de�ned as in equation (3.8). De�ne:

Ỹ ≡
[

x̃m x̃m+1 · · · x̃T−1

]′
, X̃t ≡

[
x̃′t−1 x̃′t−2 · · · x̃′t−m

]′
, X̃ ≡

[
X̃p · · · X̃T−1

]′
.

Also, for a given δ, de�ne:

Q̂a ≡ Qa + X̃′X̃ (3.14)

Q̂e ≡ (ν + T −m)
(
νQ̄−1e + ĀQaĀ

′ + Ỹ′Ỹ − ÂQ̂aÂ
′
)−1

(3.15)

Â ≡
(
ĀQa + Ỹ′X̃

)
Q̂−1a . (3.16)

Under the hybrid posterior, the marginal density of δ is proportional to:

p̃
(
δ | xT

)
∝ p (δ)κ1

′δ det
(
Q̂a

)−n2
det
(
Q̂e

) ν+T−m
2

, (3.17)

and the conditional distribution of (Qe,a), given δ, is:

Qe | δ,xT ∼ W

(
1

ν + T −m
Q̂e, ν + T −m

)
(3.18)

a | Qe, δ,x
T ∼ N

(
vec
(
Â
)
, Q̂−1a ⊗Q−1e

)
. (3.19)

10The operator D (L) is an in�nite-order lag polynomial, so we can't calculate D (L)xt exactly using a �nite sample.
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Additionally, the conditional distribution of Qe, given (δ,a), is:

Qe | a, δ,xT ∼ W

(
1

ν + T + (n− 1)m
Q̃e, ν + T + (n− 1)m

)
(3.20)

Q̃e ≡ [ν + T + (n− 1)m]

[(
1

ν + T −m
Q̂e

)−1
+
(
A− Â

)
Q̂a

(
A− Â

)′]−1
. (3.21)

Proposition 2 demonstrates that the hybrid posterior factors pleasantly, which will allow us to break

up the problem into manageable components. The only non-standard part of the hybrid posterior is the

marginal distribution of δ. Fortunately, the dimension of δ is only n. Conversely, the VAR parameters are

high-dimensional, but their conditional distributions are standard. These facts will form the basis of the

sampling algorithms in Section 4. The prior independence between (Qe,a) and δ can easily be relaxed, as

long the conditional prior for the VAR parameters retains a normal-Wishart form; i.e., one could specify ν,

Q̄e, Ā, and Qa as functions of δ.

The structure of the hybrid posterior also makes it relatively easy to �nd the mode. The mode provides a

convenient point estimate during preliminary data exploration, before performing Monte Carlo integration.

Also, as we'll see in Section 4.3, knowing the shape of the posterior local to the mode can be helpful for

constructing an e�cient sampler. Maximizing p̃
(
θ | xT

)
by brute force would be cumbersome, because

it's a high-dimensional optimization problem. Fortunately, we can use the results from Proposition 2 to

concentrate out the VAR parameters, so that we only have to maximize over δ. Then, given the maximizing

value of δ, it's straightforward to back out the maximizing values of Qe and a. Proposition 3 delineates the

solution.

Proposition 3. Let
(
δ†,Q†e,a

†
)
be the parameters that maximize the hybrid posterior. Then:

δ† = argmax
δ∈[− 1

2 ,
1
2 ]
n
p (δ)κ1

′δ det
(
Q̂e

) ν+T+(n−1)m−n−1
2

. (3.22)

where Q̂e is taken to be a function of δ, as given by equation (3.15). Given δ†, the maximizing values of

(Qe,a) are given by:

Q†e ≡
ν + T −m+ (m− 1)n− 1

ν + T −m
Q̂e, a† ≡ vec

(
Â
)
, (3.23)

where Q̂e and Â are calculated using equations (3.15) and (3.16), evaluated using δ = δ†.
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4 Sampling Algorithms

We will discuss several strategies for sampling from the hybrid posterior p̃
(
θ | xT

)
and from the time-domain

posterior p
(
θ | xT

)
. Section 4.1 provides a fast and simple way of sampling from the hybrid posterior. In

Section 4.2, we use the method from Section 4.1 to form an e�cient proposal distribution for sequential

importance sampling, which provides a tractable way of generating draws from the exact, time-domain

posterior. Section 4.3 describes a strategy for Metropolis sampling, which is used as an intermediate step

in the sequential importance sampler. Section 4.4 provides an e�cient method for computing the marginal

data density. Section 4.5 provides some practical guidelines for implementing the algorithms.

4.1 Sampling from the Hybrid Posterior

Proposition 2 suggests a strategy for sampling θ from the hybrid posterior:

1. Draw δ from p̃
(
δ | xT

)
.

2. Given δ, draw Qe ∼W
(

1
ν+T−mQ̂e, ν + T −m

)
.

3. Given δ and Qe, draw a ∼ N
(

vec
(
Â
)
, Q̂−1a ⊗Q−1e

)
.

Steps 2 and 3 are trivial, so we just need a way to draw from the non-standard distribution p̃
(
δ | xT

)
. We've

found that Metropolis-Hastings is fast and works well. We recommend using a proposal distribution that

mixes between an independent proposal from a uniform distribution and a random-walk proposal form a

normal distribution. That is, if δ(i) is the ith draw from the Metropolis chain, then the subsequent draw is

proposed from the distribution:

δprop | δ(i) ∼


Uniform

(
− 1

2 ,
1
2

)n
with probability υ

N
(
δ(i),Σδ

)
with probability 1− υ.

(4.1)

The corresponding proposal density, denoted q (· | ·), is:

q
(
δprop | δ(i)

)
= υI

[
δprop ∈

(
−1

2
,

1

2

)n]
+ (1− υ)ϕ

(
δprop | δ(i),Σδ

)
, (4.2)

where ϕ (· | µ,Σ) is the density of the multivariate normal distribution with mean µ and variance Σ. The

variance of the random-walk component is motivated by a Laplace approximation to the hybrid posterior.

That is:

Σδ ≡

[
log
(
p̃
(
δ | xT

))
∂δ∂δ′

∣∣∣∣
δ=δ◦

]−1
, δ◦ ≡ argmax

δ∈[− 1
2 ,

1
2 ]
n
p̃
(
δ | xT

)
. (4.3)
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Algorithm 1 Sampling from the Hybrid Posterior

1. Initialization. Solve the maximization problem in equation (4.3) and compute the associated Hessian.

Initialize δ(0) = δ◦.

2. Metropolis sampling of δ. For i = 1, 2, . . . , N0 +N :

(a) With probability υ, draw δprop ∼ Uniform
(
− 1

2 ,
1
2

)n
. With residual probability, draw δprop ∼

N
(
δ(i−1),Σδ

)
.

(b) With probability min

{
1,

p̃(δprop|xT )
p̃(δ(i−1)|xT )

q(δ(i−1)|δprop)
q(δprop|δ(i))

}
, set δ(i) = δprop. With residual probability,

set δ(i) = δ(i−1).

3. Direct sampling of (Qe,a). Discard the burn-in,
{
δ(i)
}N0

i=0
. For i = N0 + 1, . . . , N0 +N :

(a) Draw Q
(i)
e ∼W

(
1

ν+T−mQ̂
(i)
e , ν + T −m

)
.

(b) a(i) ∼ N
(

vec
(
Â(i)

)
, Q̂

(i)−1
a ⊗Q

(i)−1
e

)
.

The computational burden of this maximization is very low, because δ is low-dimensional and bounded to

a unit hypercube. Notice that δ◦, de�ned above, is not the same as δ†, characterized in Proposition 3; the

former maximizes the marginal distribution of δ, whereas the latter maximizes the joint distribution.

Algorithm 1 summarizes the procedure for generating N draws from the hybrid posterior. Notice that

these draws from the hybrid posterior are not constrained to make the model stationary. To ensure that δ is

in the stationary region of the parameter space, all we have to do is assume that the prior p (δ) has support[
− 1

2 ,
1
2

]n
. We will also assume that the prior for a is Gaussian, as in equation (3.13), but truncated to the

stationary region. In practice, we execute Algorithm 1 to produce draws from the non-truncated hybrid

posterior; then, we simply discard the draws that generate non-stationarity.

4.2 Sequential Importance Sampling from the Time-Domain Posterior

We can use sequential importance sampling to perform inference using the exact, time-domain posterior.

Chapter 5 of Herbst and Schorfheide (2015) contains a detailed introduction to sequential importance sam-

pling for empirical macroeconomists, with an emphasis on DSGE models; Herbst and Schorfheide (2014)

establish additional technical results. Here, we will provide a brief summary, before discussing how to adapt

this method to the FIVAR model.

A basic (non-sequential) importance sampler uses draws from a proposal density π0 (θ) and reweights

them to obtain draws from a target density π1 (θ). For a function h (θ), one can approximate the expectation

of h (θ) under the target distribution by generating N draws
{
θ(i)
}N
i=1

from the proposal distribution and

12



computing:

∫
h (θ)π1 (θ) dθ ≈ 1

N

N∑
i=1

h
(
θ(i)
)
W (i), W (i) ≡

π1
(
θ(i)
)
/π0

(
θ(i)
)

1
N

∑N
j=1 π1

(
θ(j)
)
/π0

(
θ(j)
) . (4.4)

Geweke (1989) provides conditions under which the Monte Carlo approximation converges as N →∞. Given

a collection of draws
{
θ(i)
}N
i=1

from the proposal distribution, multinomial resampling entails constructing

a new collection of draws
{
θ(k)

}N
k=1

by setting θ(k) = θ(i) with probability W (i). The marginal distribution

of these resampled draws is the target distribution.11 One way to measure the e�ciency of the algorithm is

with the e�ective sample size, de�ned as:

ESS ≡ N
1
N

∑N
i=1

(
W (i)

)2 . (4.5)

If the proposal distribution were identical to the target distribution, then each W (i) would be equal to one,

and the e�ective sample size would be N , the number of proposals. Conversely, any discrepancy between

the proposal and the target densities creates variance in the importance weights, which causes ESS to fall.

In general, the e�ciency of importance sampling tends to decline with the size of θ, and in high-dimensional

settings, even minute di�erences between the proposal and the target can cause the importance weights

to degenerate. For the FIVAR model, one approach would be to use the hybrid posterior as the proposal

distribution, and the time-domain posterior as the target. In our experience, importance sampling performs

admirably for small systems � say, n = 2 or n = 3 � because the proposal is designed to emulate the

target. Still, basic importance sampling becomes less robust as the number of parameters grows.

We will therefore turn our attention to sequential importance sampling. The idea is to construct a

succession of distributions {πj (θ)}Nτj=0 as a bridge between the initial proposal distribution π0 (θ) and the

�nal target distribution πNτ (θ). If πj (θ) is close to πj+1 (θ), then we can perform importance sampling

and multinomial resampling, using πj (θ) as a proposal and πj+1 (θ) as a target. As with basic importance

sampling, it's advantageous for π0 (θ) to be close to the �nal target distribution. That way, only a few bridge

distributions will be necessary, and each iteration of resampling will be relatively e�cient. For τ ∈ [0, 1],

de�ne:

π (θ | τ) ≡
p
(
θ | xT

)τ
p̃
(
θ | xT

)1−τ∫
p
(
θ́ | xT

)τ
p̃
(
θ́ | xT

)1−τ
dθ́
. (4.6)

Notice that τ = 0 corresponds to the hybrid posterior, whereas τ = 1 corresponds to the time-domain poste-

rior. We will perform sequential importance sampling, taking the jth bridge distribution to be πj (θ) =

11We mention multinomial resampling for expositional simplicity. In practice, it's more e�cient to use strati�ed resampling,
which we employ to generate the results in Section 5. See Herbst and Schorfheide (2015) for a discussion.
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Algorithm 2 Sequential Importance Sampling from the Time-Domain Posterior

1. Initialization. Generate N draws
{
θ
(i)
0

}N
i=1

from the hybrid posterior using Algorithm 1. For i =

1, . . . , N , set W
(i)
0 = 1.

2. Recursion. For j = 1, . . . , Nτ :

(a) Correction. Compute the incremental importance weights for each draw i and renormalize:

w
(i)
j = W

(i)
j−1

LFIV AR
(
xT | θ(i)j−1

)
L̃FIV AR

(
xT | θ(i)j−1

)
τj−τj−1

, W̄
(i)
j =

w
(i)
j

1
N

∑
k w

(k)
j

. (4.7)

(b) Selection. Given the importance weights
{
W̄

(i)
j

}N
i=1

, compute ESSj using equation (4.5).

i. If ESSj <
N
2 or j = Nτ , then perform multinomial resampling � i.e., for each i, set θ́

(i)
j =

θ
(k)
j−1 with probability 1

N W̄
(k)
j � and reset W

(i)
j = 1 for each i.

ii. If ESSj ≥ N
2 , then set θ́

(i)
j = θ

(i)
j−1 and W

(i)
j = W̄

(i)
j for each i.

(c) Mutation. For each i, use θ́
(i)
j to initialize the Metropolis chain described in Section 4.3. Propagate

the Metropolis chain NMH times with invariant distribution π (θ | τj), and set θ
(i)
j equal to the

�nal value of the Metropolis chain.

π (θ | τj), where 0 = τ0 < · · · < τNτ = 1 is an increasing sequence of tempering parameters. Algo-

rithm 2 presents the details of the sequential importance sampler; we refer interested readers to Herbst

and Schorfheide (2014, 2015) for the technical justi�cation underlying each step. We adopt the notational

convention of adding a j subscript to parameters whose marginal distribution is πj (θ). To prevent the

parameter draws from degenerating, it's necessary to undertake a mutation step in between iterations of

importance sampling; doing so requires us to propagate a Metropolis chain that has π (θ | τj) as its invariant

distribution. Section 4.3 describes how to exploit the hybrid posterior to construct this Metropolis chain in

an easy and e�cient way. The choice of bridge distributions is the only di�erence between our procedure

and Herbst and Schorfheide's �generic� sequential importance sampler. Those authors begin by drawing

from the prior and gradually introduce sample information by specifying πj (θ) ∝ p (θ) p
(
xT | θ

)τj
, for τj

increasing from zero to one. Our strategy, by contrast, starts with an approximation to the exact posterior,

and gradually phases out the approximation error.

4.3 An E�cient Proposal for Metropolis Chains

To undertake the mutation step in Algorithm 2, we need to generate a Markov process with invariant

distribution π (θ | τ), as de�ned in equation (4.6). Taking the hybrid posterior as a proposal distribution,

we can use the Metropolis-Hastings algorithm. For brevity, we only describe the choice of parameter blocks
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and proposal distributions. We will use the following blocking scheme:

1. Propose δ, conditional on Qe, a, and xT .

2. Propose Qe, conditional on δ, a, and xT .

3. Propose a, conditional on δ, Qe, and xT .

For block one, we propose the di�erencing parameters using a random-walk step. That is, if δ(i) is the ith

draw from the Metropolis chain, then the subsequent draw is proposed from the distribution:

δprop | δ(i) ∼ N
(
δ(i), cδΣδ|V AR

)
(4.8)

Σδ|V AR ≡

[
∂2 log

(
p̃
(
θ | xT

))
∂δ∂δ′

∣∣∣∣
θ=θ†

]−1
, (4.9)

where cδ > 0 is a scaling factor. The choice of Σδ|V AR is motivated by taking a Laplace approximation to

the hybrid posterior. Unlike Σδ, which was intended to approximate the marginal variance of δ, Σδ|V AR is

intended to approximate the conditional variance of δ, given the VAR parameters. Computing Σδ|V AR is

relatively easy, given the results from Proposition 3. For blocks two and three, we propose Qe and a from

their conditional distributions under the hybrid posterior: We propose Qe from the Wishart distribution in

equation (3.20), and we propose a from the normal distribution in equation (3.19). Instead of proposing all

of the autoregressive coe�cients in a single block, it can be helpful to break up a into several subvectors.

Doing so is straightforward, because the elements of a are jointly Gaussian.

4.4 Computing the Marginal Data Density

The marginal data density (MDD) provides a means of assessing and comparing models within the Bayesian

framework; Kass and Raftery (1995) provide a conceptual overview. The MDD is de�ned as the probability

of observing the data, given the model, having marginalized over all the parameters:

p
(
xT
)
≡
∫
L
(
xT | θ

)
p (θ) dθ. (4.10)

Because the FIVAR has a high-dimensional parameter space, the MDD is a high-dimensional integral. Again,

the results from Section 3 provide a computationally feasible way of evaluating equation (4.10). To calculate

the MDD for a generic posterior distribution, Gelfand and Dey (1994) propose the modi�ed harmonic mean

estimator:

p
(
xT
)
≈

[
1

N

N∑
i=1

f
(
θ(i)
)

L
(
xT | θ(i)

)
p
(
θ(i)
)]−1 , (4.11)
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where
{
θ(i)
}N
i=1

are draws from the posterior, and where f (·) is a proper probability density whose support

is contained in the parameter space. If f (θ) were identical to p
(
θ | xT

)
, then equations (3.1) and (4.10)

would imply that equation (4.11) holds exactly. Otherwise, for the Monte Carlo approximation to be a good

one, a judicious choice of f (·) is necessary to ensure that the summand in equation (4.11) has �nite variance;

in particular, θ values that have near-zero posterior probability will make this estimate numerically unstable.

Geweke (1999) recommends choosing f (·) to approximate the posterior over some compact subset of the

parameter space. Truncating the tails of f (·) helps prevent outliers from causing the summand in equation

(4.11) to explode.

For the FIVAR model, a good choice of f (·) is especially important because of the number of parameters

involved. Fortunately, we already have a good approximation to the exact posterior, in the form of the

hybrid posterior. Appendix B.1 explains in detail how we use a truncated version of the hybrid posterior to

construct f (·).

4.5 Practical Considerations

Before moving on to the application, we'll touch on some practical considerations when constructing the

sampling routines. The performance and e�ciency of our algorithms comes from the accuracy of the approx-

imations that undergird the hybrid posterior. Appendix B.2 explores in detail the proximity between the

hybrid posterior and the exact, time-domain posterior. For bivariate models, the hybrid and time-domain

posteriors are extremely close. For a �xed T , adding more variables to the system somewhat diminishes

the quality of the approximation, yet the results from the hybrid posterior and the time-domain posterior

are practically very similar, even for the larger models that we estimate. Consequently, our exact-posterior

inferences are not overly sensitive to the choice of tuning parameters in the sequential importance sampler.

Below, we outline the numerical settings we use to estimate a model with �ve variables. Readers who are

interested in the empirical results can proceed directly to Section 5.

Let's begin with Algorithm 2. The computational burden of sampling from the exact posterior comes

mainly from repeat evaluation of the time-domain likelihood function. For each candidate set of parameters,

it's necessary to compute the �rst T autocovariances of the FIVAR process; then, it's necessary to compute

the inverse and determinant of the Tn× Tn variance-covariance matrix of the full sample xT . To calculate

the autocovariances, we use the multivariate splitting algorithm described by Sela and Hurvich (2009), and to

deal with the full-sample variance-covariance matrix, we use the recursive least-squares algorithm described

by Sowell (1989a). In Algorithm 2, most of the likelihood evaluations take place in the mutation step.

Fortunately, as emphasized by Herbst and Schorfheide (2014, 2015), the mutation step can be executed in
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parallel: For bridge distribution j, draw i can be propagated independently of draw i + 1. Consequently,

the algorithm's run time is more sensitive to the number of bridge distributions Nτ than the number of

draws N . We set Nτ = 10 and N = 10, 000. The number of bridge distributions is strikingly small � for

other models, it's not unusual to use hundreds or thousands.12 Generally speaking, sequential importance

sampling works well when successive bridge distributions are relatively close to one another. In contexts

where the initial proposal distribution is far away from the �nal target distribution, it helps to introduce

information gradually with a large number of bridge distributions. In the context of our problem, though,

the hybrid posterior is a good approximation to the exact posterior, so it takes only a few steps to get

from π0 (θ) to πNτ (θ). For the tempering parameters, we use τj = j/Nτ . One way to assess the e�cacy

of a particular tempering scheme is to look at ESSj for each bridge distribution in the recursion: If ESSj

starts out too low, then the bridge distributions are probably too far apart. This is not a problem that we

encountered, suggesting that our sequence of bridge distributions is reasonable.13

The mutation step in Algorithm 2 propagates the Metropolis chain described in Section 4.3, which

requires some tuning parameters. The scaling factor cδ controls the dispersion of the random-walk proposals

for the di�erencing parameters. To generate the results in Section 5, we set cδ adaptively, as in Herbst and

Schorfheide (2014), to target a good acceptance rate.14 However, we also found that simply setting cδ = 1

produces similar results. Proposing a in several blocks increases the acceptance rate for each proposal, but

at the cost of having to evaluate the likelihood more times. In practice, we break up a into three randomly

assigned blocks. The acceptance rates for Qe and a are fairly high, because the Metropolis chain uses the

hybrid posterior as a proposal distribution. (If the hybrid posterior were exactly equal to the time-domain

posterior, then the Metropolis steps for Qe and a would be equivalent to Gibbs steps, and the acceptance rate

would be one.) Consequently, the mutation step in Algorithm 2 does a good job of preventing degeneracy

in the sequential importance sampler. With this in mind, we set NMH = 1.

Finally, Algorithm 1 is relatively straightforward, but we will mention a few details. In step 2 of the

algorithm, the choice of υ governs the amount of autocorrelation in the Metropolis chain with invariant

distribution p̃
(
δ | xT

)
. We set υ = 0.20, which usually generates an acceptance rate of about one third when

12For example, Herbst and Schorfheide (2014) use Nτ = 500 to estimate the DSGE model from Smets and Wouters (2007),
and Bognanni and Herbst (2018) use Nτ = 2, 000 for a Markov-switching VAR.

13For example, Model IV, which we discuss in Section 5, has �ve variables, �ve lags, and 143 parameters. Using N = 10, 000
parameter draws and Nτ = 10 bridge distributions, the e�ective sample sizes for the bridge distributions were 9,440, 8,631,
7,644, 6,548, 5,431, 4,243, 9,536, 8,573, 7,329, and 6,029.

14That is, for the jth iteration of the recursion, we use cδ,j . We initialize cδ,0 = 1. Then, we set:

cδ,j = cδ,j−1

(
.95 + .05

exp
{
16
(
ARj−1 − 1

3

)}
1 + exp

{
16
(
ARj−1 − 1

3

)}) ,

where ARj−1 is the fraction of δ proposals accepted in iteration j − 1. That way, the acceptance rate for δ proposals will

gravitate toward 1
3
.

17



n = 5. For step 2 of Algorithm 1, we run the Metropolis chain for 1, 500, 000 iterations. After obtaining the

δ(i) draws, we obtain the
(
Q

(i)
e ,a(i)

)
draws, as described in step 3 of Algorithm 1. To truncate p̃

(
δ | xT

)
to the stationary region of the parameter space, we discard any draw i such that

(
δ(i),Q

(i)
e ,a(i)

)
implies

non-stationarity. To allow for a burn-in, we retain only the last 1, 000, 000 stationary draws; then, to reduce

the correlation across draws, we only retain every 100th value. This leaves us with 10, 000 draws whose

marginal distribution is the hybrid posterior, truncated to the stationary region of the parameter space. To

cut computing time, notice that step 3 of Algorithm 1 can be executed in parallel.

5 Application: Technology Shocks

5.1 Identi�cation

Following the structural VAR literature, we will assume that the reduced-form forecast errors et are linear

combinations of some structural economic shocks εt:

et = Ξεt, εt
i.i.d.∼ N (0n×1, In) . (5.1)

Combining the above with equation (2.1) yields the structural moving-average representation of xt:

xt = D (L)
−1

A (L)
−1

Ξεt. (5.2)

The hth moving-average coe�cient gives us the structural impulse response
∂xt+h
∂ε′t

. The data are informative

about Qe, and the matrix Ξ must satisfy ΞΞ′ = Q−1e . There are many matrices that satisfy this condition,

so we need to make an economic argument to identify Ξ. More precisely, to identify the �rst s shocks, we

need to recover the �rst s columns of Ξ.

Long-run identi�cation, in the mode of Blanchard and Quah (1989), places restrictions on the permanent

e�ects of εt. Suppose that we're interested in some economic variable yt, which is assumed to be di�erence-

stationary. We can identify ε1,t as the only shock that has a non-zero (and �nite) permanent e�ect on yt; the

permanent e�ects of all other shocks on yt are assumed to be zero. Without loss of generality, let x1,t = ∆yt.

The e�ect of εt on yt+h is:

∂yt+h
∂ε′t

=
∂

∂ε′t

[
yt−1 +

h∑
k=0

∆yt+k

]
=

h∑
k=0

∂x1,t+k
∂ε′t

. (5.3)

Letting h→∞ shows that the permanent e�ects of the shocks (on yt) are the sums of the impulse responses
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(for x1,t). Tschernig et al. (2013) and Lovcha and Perez-Laborda (2015) point out some subtleties of long-run

restrictions with FIVARs. In light of equation (5.2), limh→∞
∂yt+h
∂ε′t

equals the �rst row of D (1)
−1

A (1)
−1

Ξ.

Recall that the (1, 1) element of D (L) is (1− L)
δ1 . This fact implies that δ1 must be constrained to equal

zero: If δ1 were positive, then the �rst row of D (1)
−1

A (1)
−1

Ξ would be in�nite, and if δ1 were negative,

then the �rst row of D (1)
−1

A (1)
−1

Ξ would be zero. With the restriction δ1 = 0 in place, it will be more

convenient to look at the long-run e�ect of εt on D (L) xt, keeping in mind that the �rst element of D (L) xt

is simply x1,t = ∆yt. An argument analogous to the one above shows that:

lim
h→∞

h∑
k=0

∂D (L) xt+k
∂ε′t

= A (1)
−1

Ξ. (5.4)

One solution is to constrain A (1)
−1

Ξ to be lower triangular, which ensures that only the �rst coordi-

nate of limh→∞
∂yt+h
∂ε′t

is non-zero. This restriction implies that A (1)
−1

Ξ is the lower Cholesky factor of

A (1)
−1

Q−1e A (1)
−1′

. Hence:

Ξ = A (1) chol
(
A (1)

−1
Q−1e A (1)

−1′
)
. (5.5)

There are other matrices Ξ̃ such that Ξ̃Ξ̃′ = Q−1e , and the �rst row of A (1)
−1

Ξ̃ has a positive number in

the �rst coordinate and zeros everywhere else. However, Christiano et al. (2006) show that all such matrices

have the same �rst column; thus, to identify ε1,t, it is su�cient to compute the �rst column of the matrix

Ξ as de�ned in equation (5.5). More generally, we can can use the �rst s columns of Ξ to identify s shocks

using long-run restrictions: If xj,t = ∆yj,t and δj = 0, then (ε1,t, . . . , εj,t) will have permanent e�ects on yj,t,

but (εj+1,t, . . . , εn,t) will not.

From the above formulation, we can see why the distinction between FIVARs and VARs is important for

identifying economic shocks with long-run restrictions. If xt is generated by a FIVAR with long memory, then

the misspeci�cation from �tting a VAR is most severe at low frequencies: For ω local to zero, fV AR (ω | θ)

is �at, but some elements of fFIV AR (ω | θ) diverge to in�nity. Equation (5.5) shows why this fact is so

relevant for long-run identi�cation: A (1)
−1

Q−1e A (1)
−1′

is equal to fV AR (0 | θ). Estimating the wrong

model does more than just degrade our ability to �t the data. By neglecting fractional integration, we might

misapprehend the mapping between statistical forecasting errors and structural economic shocks.

We will consider two types of long-run restrictions. First, we will estimate models using the same

identi�cation scheme as Galí (1999), who argues that only total-factor productivity (TFP) can have a

permanent e�ect on labor productivity. That is, we specify x1,t as the log di�erence of real output per hour,

and we interpret ε1,t as a TFP shock. Second, we will use the identi�cation scheme introduced by Fisher

(2006), who argues that only investment-speci�c technology (IST) can have a permanent e�ect on the price
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of investment goods, relative to consumption goods. That is, we specify x1,t as the log di�erence of the

relative price of investment (RPI) and x2,t as the log di�erence of real output per hour; in that case, we

interpret ε1,t as an IST shock and ε2,t as a TFP shock. Notice that, in Fisher's framework, both IST and

TFP shocks can have permanent e�ects on labor productivity.

5.2 Data

Table 1 summarizes the model speci�cations that we consider. We estimate small models (I and II) and larger

models (III and IV), allowing hours per capita to enter either in log levels (I and III) or in log di�erences (II

and IV). All four models include labor productivity and hours so that we can identify TFP shocks. Models

III and IV include RPI so that we can identify IST shocks as well. In addition, the larger models include

in�ation and interest rates. Including these variables serves two purposes. First, in�ation and interest rates

are relevant to investment behavior, so conditioning on these variables can account for some of the variation

in RPI. Second, we will be able to see how in�ation and interest rates react to technology shocks.

The raw data are available from FRED. Our sample runs from 1955 to 2007; for comparability to other

authors, we exclude the Great Recession. The data are quarterly, and all models include �ve lags. We

measure labor productivity growth as 100 times the log di�erence of real output per hour in the non-farm

business sector. We measure hours as 100 times the log of hours of work in the non-farm business sector,

minus 100 times the log of the non-institutional population over the age of 16. To construct the price of

investment, we compute a chain-weighted average of the NIPA series for gross private domestic investment

and durable consumption, and we back out the price de�ator. To construct the price of consumption, we

compute a chain-weighted average of the NIPA series for nondurable consumption and services consumption,

and we back out the price de�ator. We measure in�ation as 100 times the log di�erence of our consumption

price index. We measure RPI as our investment price index, divided by the consumption price index, and

this variable enters our models in log di�erences, multiplied by 100. The interest rate we consider comes

from the 3-month Treasury bill. All series were demeaned before estimation. For each model, we back out

the response of log output by summing the responses of log labor productivity and log hours.

5.3 Priors

Our priors are centered on a conventional VAR. Pursuant to the discussion in Section 5.1, identifying technol-

ogy shocks requires us to impose a priori that some elements of δ are zero. For the unconstrained elements
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Table 1: Model Speci�cations

Variables Included Shocks

Model
RPI Productivity Hours Hours In�ation Interest Identi�ed

Growth Growth (log level) (log di�erence) Rate Rate IST TFP

I X X X

II X X X

III X X X X X X X

IV X X X X X X X

of δ, we adopt independent priors:

δj +
1

2

i.i.d.∼ Beta (1 + α, 1 + α) . (5.6)

The choice of a beta distribution con�nes δ to the stationary and invertible region. Setting α = 0 corresponds

to a uniform prior, and letting α → ∞ makes the FIVAR collapse to a VAR. In practice, we set α = 4,

meaning that −.25 < δj < .25 with about 90% probability, and −.10 < δj < .10 with about 50% probability.

Our priors over (Qe,a) are independent of δ and assume the normal-Wishart form of equations (3.12) and

(3.13), truncated to the stationary region of the parameter space. For the choice of hyperparameters, we

follow common practices in the Bayesian VAR literature. For Q̄e, we specify:

Q̄e = diag
(
σ̂2
1 , . . . , σ̂

2
n

)−1
, (5.7)

where σ̂2
j is the residual variance from a univariate autoregression with variable j.15 Our prior on Qe is

relatively di�use, with ν = n+ 1. We set Ā to a matrix of zeros. The autoregressive coe�cients are shrunk

to zero more aggressively for longer lags:

Qa =
1

λ2
diag (1, . . . ,m)

2 ⊗ diag
(
σ̂2
1 , . . . , σ̂

2
n

)
, (5.8)

where λ controls the overall tightness of the prior on a. The prior variance of the (i, j) element of A` is

therefore centered at:

V
[
[A`]i,j | Qe = Q̄e

]
=

(
λσ̂i
`σ̂j

)2

. (5.9)

In practice, we set λ = 1
5 .

15Strictly speaking, a prior should not contain sample information; however, this is the standard way of eliciting priors in the
Bayesian VAR literature.
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Figure 1: Di�erencing Parameters in Models I and II
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The posterior distribution of the di�erencing parameter for the log level of hours (Model I, in red), and the di�erencing
parameter for the log di�erence of hours (Model II, in blue). The dotted black line is the prior, which is the same
across models.

5.4 Bivariate Models

We begin by �tting the smallest models possible to identify TFP shocks. Figure 1 shows the posterior of

the di�erencing parameters for the level of hours (Model I) and the �rst di�erence of hours (Model II).

The posterior for Model I puts a lot of mass on the level of hours having a di�erencing parameter near 1
2 ,

suggesting that a standard VAR with hours in levels would drastically understate the persistence of the series.

The posterior from Model II shows weak evidence of long memory in the di�erence of hours. If hours were

over-di�erenced in Model II, then we would expect to see the posterior in Model II move toward negative

memory, rather than long memory. This fact suggests that it's appropriate to take the �rst di�erence of

hours. More formally, the MDD for Model II is about 24 log points higher than the MDD for Model I, which

is consistent with the graphical diagnostics.

Although the data point toward hours being non-stationary, some macroeconomists might have strong

priors that the log level of hours should be stationary. Strictly speaking, hours per capita are bounded,

and most theories predict that hours are mean-reverting. However, the assumption that hours are I (0)

demands a much stronger prior than the assumption that hours are stationary. As we will see, conditional

on treating hours as stationary, estimating Model I with a FIVAR and estimating Model I with a VAR

produce substantially di�erent results. But conditional on estimating a FIVAR, Models I and II lead to
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Table 2: Variance Decompositions, Bivariate Models

Model I: FIVAR Model I: VAR

Full Business Low Full Business Low
Spectrum Cycles Frequency Spectrum Cycles Frequency

Output Growth
11

[3, 32]
7

[1, 27]
23

[11, 45]
60

[21, 92]
57

[19, 91]
70

[33, 96]

Hours Growth
18

[6, 40]
13

[4, 33]
5

[0, 24]
13

[5, 40]
16

[5, 49]
19

[1, 59]

Productivity Growth
66

[39, 89]
64

[36, 86]
94

[82, 99]
91

[71, 96]
84

[65, 93]
83

[61, 96]

Model II: FIVAR Model II: VAR

Full Business Low Full Business Low
Spectrum Cycles Frequency Spectrum Cycles Frequency

Output Growth
19

[7, 35]
11

[2, 29]
15

[3, 32]
15

[6, 30]
8

[2, 22]
14

[2, 31]

Hours Growth
9

[4, 21]
8

[3, 18]
2

[0, 12]
12

[5, 25]
10

[4, 22]
3

[0, 14]

Productivity Growth
75

[56, 89]
68

[48, 86]
96

[93, 99]
71

[52, 86]
64

[44, 82]
96

[92, 98]

Numbers represent the posterior median of the percent contribution of the identi�ed technology shocks to the variance
of each variable coming from oscillations in each frequency band. Numbers in square brackets are the 10th and 90th
posterior quantiles. �Full spectrum� refers to the unconditional variance; �business cycles� refers to the variance due
to oscillations with periods between 1.5 and 8 years; �low frequency� refers to the variance due to oscillations with
periods longer than 8 years. All percentages are rounded to the nearest integer.

similar conclusions about the economic impacts of TFP shocks.

Figure 2 shows the impulse responses from a positive TFP shock in Model I (left column) and in Model

II (right column). The blue lines, which represent the results from a standard VAR, tell a story familiar

from the literature: When hours enter in levels, a positive TFP shock increases hours of work, but when

hours enter in di�erences, a positive TFP shock decreases hours of work. Like Gil-Alana and Moreno (2009)

and Lovcha and Perez-Laborda (2015), we �nd that the bivariate FIVAR models (red lines) have a more

robust prediction: Qualitatively, when TFP goes up, hours go down on impact, regardless of whether hours

are assumed to be stationary in levels or stationary in di�erences. In Model I, the discrepancy between the

VAR and the FIVAR is noteworthy, considering that the latter just adds a single parameter to the former.

In Model II, the FIVAR impulse responses are quite similar to the VAR impulse responses, re�ecting the

fact that the posterior for δ hasn't moved very far from the prior, which is centered at zero.

Table 2 shows the variance decompositions for the bivariate models, estimated using a FIVAR and

standard VAR. We have decomposed the variance of the observables by shocks and by frequency bands. We

consider the unconditional variance, the variance at business-cycle frequencies (periodicities between 6 and
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Figure 2: Impulse Responses from TFP Shocks in Models I and II
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Responses, in levels, from a one-standard-deviation positive shock to TFP. The left column shows results from Model
I, with hours in levels; the right column shows results from Model II, with hours in di�erences. The red lines are
results from the FIVAR model; the blue lines are results from a VAR without fractional integration. Solid lines
represent pointwise posterior median responses; dashed lines represent the 10th and 90th posterior quantiles.
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32 quarters), and the variance at low frequencies (periodicities longer than 32 quarters). Let's begin with

Model I, summarized in the top panel of Table 2. Whether a practitioner �ts Model I with a FIVAR or a

VAR determines the measured importance of TFP shocks for driving �uctuations in output growth. The

VAR suggests that TFP shocks generate most of the variation in output growth, although the posterior

credible sets are quite wide. In contrast, the FIVAR suggests that TFP shocks generate relatively little

variation in output growth, especially at business-cycle frequencies. The VAR and the FIVAR both indicate

that TFP shocks account for the majority of the variation in productivity growth, but not hours growth.

(Even though log hours enter Model I in levels, we have calculated the variance decomposition for the log

di�erence of hours to facilitate a comparison to Model II.) Mechanically, output growth is the sum of hours

growth and productivity growth, and the FIVAR impulse responses show that hours and productivity move in

opposite directions following a TFP shock. Consequently, according to the FIVAR, TFP generates relatively

little movement in output growth. The bottom panel of Table 2 shows the variance decompositions for

Model II. Now, the VAR and the FIVAR produce similar results: TFP shocks cause most of the variation in

productivity, but not output nor hours. The similarity between the VAR and FIVAR in Model II comes from

the fact that the log di�erence of hours is close to I (0). Interestingly, Models I and II produce similar results

when both are estimated with FIVARs, even though they make di�erent assumptions about the stationarity

of hours. In a sense, allowing for fractional integration allows the stationary model to be �closer� to the

non-stationary model, so the results are less sensitive to ex ante assumptions about stationarity.

5.5 Full Models

Before studying the identi�ed technology shocks, we will look at the statistical evidence of long memory

in the larger models. Models III and IV build on the bivariate models by including RPI, in�ation, and

interest rates, in addition to labor productivity and hours per capita. Model III renders hours in log levels,

and Model IV renders hours in log di�erences. Recall that, to identify technology shocks, the di�erencing

parameters for the log di�erences of RPI and labor productivity are constrained to be exactly zero. Figure

3 displays the posterior distribution of unrestricted di�erencing parameters. Like before, the balance of

evidence suggests that it's appropriate to di�erence hours: The posterior from Model IV suggests that the

log di�erence of hours is nearly I (0), with maybe slight evidence of long memory, and the MDD from Model

IV is about 24 log points higher than the MDD from Model III. For in�ation and interest rates, both models

show strong evidence of long memory, so a standard VAR would struggle to �t the low-frequency �uctuations

of these variables. Hereafter, we focus on the results from Model IV, because it's favored by the data; for

completeness, the results from Model III are available in Appendix B.3.
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Figure 3: Di�erencing Parameters in Models III and IV
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The posterior distribution of the di�erencing parameters when hours enter in log levels (Model III, in red) and when
hours enter in log di�erences (Model IV, in blue).
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Figure 4: Impulse Responses from a TFP Shock in Model IV
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Responses from a one-standard-deviation positive shock to TFP in Model VI. The red lines are results from the
FIVAR model; the blue lines are results from a VAR without fractional integration. Solid lines represent pointwise
posterior median responses; dashed lines represent the 10th and 90th posterior quantiles.
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TFP Shocks Figure 4 shows the impulse responses from a TFP shock, with the FIVAR depicted in red

and the VAR depicted in blue. Given the evidence of long memory, it's interesting how close the FIVAR

impulse responses are to the VAR impulse responses. Now, there are two empirical results that run counter

to the theory of real business cycles. First, we see the well-known Galí (1999) phenomenon: Hours drop on

impact following a positive TFP shock. Second, the theory predicts that higher TFP raises the marginal

product of capital, but the impulse responses show that interest rates decline. Note that the drop in nominal

interest rates exceeds the drop in in�ation, so both real and nominal interest rates fall. It's not obvious what

drives this result, but one possibility is the systematic component of monetary policy. Suppose that the

central bank can observe output, hours, and in�ation � but not the underlying TFP shock. Figure 4 shows

that, when the shock hits, hours and in�ation both decline. At short horizons, the output response appears

to be only slightly positive, and the credible set for the impulse response contains zero. If the central bank

were following a Taylor-type rule, then one might expect policymakers to cut interest rates in response to a

shock that depresses hours and, to a lesser extent, in�ation.

The variance decompositions, shown in Table 3, allow us to assess the relative importance of TFP

shocks. Relative to Model II, Model IV ascribes more importance to TFP shocks for explaining hours, but

less for output. Adding the additional covariates has a larger a�ect on the variance decomposition for labor

productivity: Although TFP remains important at low frequencies, TFP shocks account for a minority of

the variance of labor productivity, either unconditionally or at business-cycle frequencies. Also, TFP shocks

contribute very little to observed movements in RPI growth. These conclusions are shared by the FIVAR and

the VAR. There's a larger discrepancy between FIVAR and VAR when accounting for in�ation: Relative to

the VAR, the FIVAR attributes about half as much of the variation in in�ation to TFP shocks. The in�ation

series has a strong low-frequency component, coming from the Great In�ation of the 1970s and the Volcker

disin�ation of the 1980s. The VAR, which cannot generate the same persistence as a FIVAR, leads us to

believe that a larger share of in�ation can be explained by permanent shifts in TFP. The FIVAR, which

provides a better statistical �t at low frequencies, suggests that the movements in in�ation are coming more

from non-technological sources. The FIVAR also attributes a smaller share of interest-rate movements to

TFP shocks, relative to the VAR, but the di�erence is less pronounced.

IST Shocks Figure 5 shows the impulse responses from an IST shock, and the FIVAR and the VAR paint

substantially di�erent pictures. (The �gure depicts a shock that increases RPI, which can be interpreted as

a negative movement in IST.) When IST goes down, the VAR basically predicts a once-and-for-all drop in

hours, accompanied by relatively little movement in labor productivity, which translates into a once-and-

for-all drop in output. In contrast, the FIVAR predicts relatively little movement in hours, accompanied by
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Table 3: Variance Decompositions, Full Models

Model IV: FIVAR Model IV: VAR

Full Business Low Full Business Low
Spectrum Cycles Frequency Spectrum Cycles Frequency

Output Growth
TFP

9
[5, 15]

4
[1, 11]

21
[9, 36]

9
[5, 17]

5
[2, 15]

21
[8, 39]

IST
5

[2, 11]
4

[1, 12]
6

[1, 19]
14

[5, 31]
9

[2, 28]
10

[2, 28]

Hours Growth
TFP

22
[11, 36]

21
[9, 36]

9
[3, 21]

23
[9, 41]

22
[7, 41]

12
[3, 27]

IST
5

[1, 13]
5

[1, 17]
5

[0, 15]
11

[3, 13]
9

[1, 31]
9

[1, 31]

Productivity
Growth

TFP
41

[26, 59]
38

[24, 55]
84

[66, 93]
31

[16, 53]
28

[14, 47]
79

[58, 89]

IST
4

[1, 9]
3

[1, 9]
8

[0, 27]
8

[3, 16]
6

[2, 15]
5

[0, 24]

In�ation
TFP

18
[5, 37]

17
[5, 34]

19
[4, 41]

38
[16, 61]

35
[15, 56]

40
[15, 66]

IST
8

[2, 27]
8

[2, 19]
8

[0, 33]
8

[2, 35]
6

[1, 26]
9

[0, 40]

Interest Rates
TFP

23
[6, 46]

21
[6, 40]

24
[6, 47]

36
[14, 62]

24
[8, 45]

39
[14, 66]

IST
7

[0, 31]
6

[1, 20]
8

[0, 32]
12

[3, 41]
16

[5, 43]
10

[2, 41]

RPI Growth
TFP

3
[0, 10]

3
[0, 23]

0
[0, 3]

5
[2, 16]

6
[1, 20]

5
[1, 17]

IST
76

[58, 88]
73

[52, 87]
95

[88, 98]
40

[22, 61]
32

[13, 57]
73

[54, 85]

Numbers represent the posterior median of the percent contribution of the identi�ed technology shocks to the variance
of each variable coming from oscillations in each frequency band. Numbers in square brackets are the 10th and 90th
posterior quantiles. �Full spectrum� refers to the unconditional variance; �business cycles� refers to the variance due
to oscillations with periods between 1.5 and 8 years; �low frequency� refers to the variance due to oscillations with
periods longer than 8 years. All percentages are rounded to the nearest integer.
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Figure 5: Impulse Responses from an IST Shock in Model IV
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Responses, in levels, from a one-standard-deviation negative shock to IST. The red lines are results from the FIVAR
model; the blue lines are results from a VAR without fractional integration. Solid lines represent pointwise posterior
median responses; dashed lines represent the 10th and 90th posterior quantiles.
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a delayed slide in labor productivity, which is mirrored in the path of output. The response of interest rates

is weakly positive according to the FIVAR, but negative according to the VAR.

The variance decompositions in Table 3 illustrate the relative (un)importance of IST shocks. Across

frequency bands, the FIVAR and the VAR both �nd that IST shocks account for little of the variation

in any of the variables other than RPI. Relative to the VAR, the FIVAR suggests a smaller role for IST

shocks in explaining output, hours, productivity, and interest rates, although there's a fair amount of overlap

between the FIVAR credible sets and the VAR credible sets. For RPI itself, the FIVAR attributes more much

variation to IST shocks than the VAR, especially at business-cycle frequencies. As a point of comparison,

several other authors have estimated the contribution of IST shocks to movements in output growth. Using

Bayesian DSGE models, Justiniano et al. (2011) and Schmitt-Grohé and Uribe (2012) �nd that IST shocks

account for none of the variance of output.16 Our results are not that extreme, but the FIVAR in Model IV

can only explain 5% of output growth with IST shocks. In contrast, Fisher (2006) uses a (frequentist) VAR

to decompose the variance of output growth at business-cycle frequencies; in his baseline speci�cation, he

�nds that IST accounts for 42% over the period 1955-1979 and 67% over the period 1982-2000. That being

said, Fisher uses di�erent data over a di�erent sample period, and Justiniano et al. point out that Fisher

may be attributing more importance to IST shocks because his preferred measure of RPI is more strongly

countercyclical.17

6 Conclusion

FIVARs are under-utilized tools in empirical macroeconomics. In this paper, we have contributed a relatively

easy way of expanding the VAR framework to incorporate fractional integration with Bayesian estimation.

There are numerous avenues for future research. First, the structural VAR literature has developed various

strategies for identifying economic shocks, and most of these approaches can be used with FIVARs as well. In

this paper, we analyzed long-run restrictions, and we found di�erences between the FIVAR's and the VAR's

implications for technology shocks. Many cutting-edge identi�cation strategies are explicitly Bayesian, such

16Justiniano et al. (2011) decompose the variance of the level of log output at business-cycle frequencies, and Schmitt-Grohé
and Uribe (2012) decompose the unconditional variance of the log di�erence of output. In both cases, the authors found that
IST shocks play no role. When comparing our results to theirs, note that Schmitt-Grohé and Uribe refer to two di�erent
shocks as investment-speci�c technology: One shock has a temporary e�ect on the rate at which investment is transformed
into installed capital, and the other has a permanent e�ect on the rate at which consumption goods are transformed into
investment. Justiniano et al. refer to the former as a marginal e�ciency of investment shock, and the latter as an investment-
speci�c technology shock. Likewise, the shock that we're calling IST corresponds to a non-stationary shock to the rate of
transformation between consumption and investment.

17Fisher (2006) used a quarterly interpolation of the annual series on the real price of equipment, as estimated by Cummins
and Violante (2002). At that time, the NIPA investment de�ators did not as thoroughly incorporate quality adjustments, unlike
Cummins and Violante. However, Justiniano et al. (2011) point out that the NIPA numbers have subsequently been updated
with more quality adjustments in their price indices. Another limitation of the Cummins-Violante data is that it only extends
through 2000.
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as the sign restrictions studied by Uhlig (2005), Baumeister and Hamilton (2015), and Arias et al. (2018). Our

methodology provides a way of applying these insights to situations where the data show signs of fractional

integration. Second, it's worth exploring the forecasting properties of Bayesian FIVARs. Giannone et al.

(2015), Koop (2013), and Ba«bura et al. (2010) investigate the predictive power of Bayesian VARs, with

an appropriate amount of shrinkage to accommodate large datasets. It would be interesting to see how the

Bayesian FIVAR compares. In particular, the low-frequency features of the FIVAR might be advantageous

for forecasting at long horizons.

References

Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys (2001). The distribution of realized exchange

rate volatility. Journal of the American Statistical Association 96 (453), 42�55.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys (2003). Modeling and forecasting realized

volatility. Econometrica 71 (2), 579�625.

Arias, J., J. Rubio-Ramirez, and D. Waggoner (2018). Inference based on SVAR identi�ed with sign and

zero restrictions: Theory and applications. Econometrica 86 (2), 685�720.

Baillie, R. T. (1996). Long memory processes and fractional integration in econometrics. Journal of Econo-

metrics 73 (1), 5�59.

Ba«bura, M., D. Giannone, and L. Reichlin (2010). Large Bayesian vector auto regressions. Journal of

Applied Econometrics 25 (1), 71�92.

Baumeister, C. and J. D. Hamilton (2015). Sign restrictions, structural vector autoregressions, and useful

prior information. Econometrica 83 (5), 1963�1999.

Bhardwaj, G. and N. R. Swanson (2006). An empirical investigation of the usefulness of ARFIMA models

for predicting macroeconomic and �nancial time series. Journal of Econometrics 131 (1-2), 539�578.

Blanchard, O. J. and D. Quah (1989). The dynamic e�ects of aggregate demand and supply disturbances.

The American Economic Review , 655�673.

Bognanni, M. and E. Herbst (2018). A sequential Monte Carlo approach to inference in multiple-equation

Markov-switching models. Journal of Applied Econometrics 33 (1), 126�140.

Christiano, L. J., M. Eichenbaum, and R. Vigfusson (2003). What happens after a technology shock?

Technical report, National Bureau of Economic Research.

32



Christiano, L. J., M. Eichenbaum, and R. Vigfusson (2006). Assessing structural VARs. NBER Macroeco-

nomics Annual 21, 1�105.

Cummins, J. G. and G. L. Violante (2002). Investment-speci�c technical change in the United States (1947�

2000): Measurement and macroeconomic consequences. Review of Economic Dynamics 5 (2), 243�284.

Del Negro, M. and F. Schorfheide (2011). Bayesian Macroeconometrics, pp. 293�389. Oxford University

Press.

Doppelt, R. and K. O'Hara (2018). Posterior sampling in two classes of multivariate fractionally integrated

models. Technical report, New York University.

Fernald, J. G. (2007). Trend breaks, long-run restrictions, and contractionary technology improvements.

Journal of Monetary Economics 54 (8), 2467�2485.

Fisher, J. D. (2006). The dynamic e�ects of neutral and investment-speci�c technology shocks. Journal of

Political Economy 114 (3), 413�451.

Francis, N. and V. A. Ramey (2009). Measures of per capita hours and their implications for the technology-

hours debate. Journal of Money, Credit and Banking 41 (6), 1071�1097.

Galí, J. (1999). Technology, employment, and the business cycle: Do technology shocks explain aggregate

�uctuations? American Economic Review 89 (1), 249�271.

Gelfand, A. E. and D. K. Dey (1994). Bayesian model choice: Asymptotics and exact calculations. Journal

of the Royal Statistical Society. Series B (Methodological), 501�514.

Geweke, J. (1989). Bayesian inference in econometric models using Monte Carlo integration. Econometrica:

Journal of the Econometric Society , 1317�1339.

Geweke, J. (1999). Using simulation methods for Bayesian econometric models: Inference, development, and

communication. Econometric reviews 18 (1), 1�73.

Giannone, D., M. Lenza, and G. E. Primiceri (2015). Prior selection for vector autoregressions. Review of

Economics and Statistics 97 (2), 436�451.

Gil-Alana, L. A. and A. Moreno (2009, November). Technology Shocks And Hours Worked: A Fractional

Integration Perspective. Macroeconomic Dynamics 13 (05), 580�604.

Granger, C. W. (1997). On modelling the long run in applied economics. The Economic Journal 107 (440),

169�177.

33



Graves, T., R. Gramacy, C. Franzke, and N. Watkins (2015). E�cient Bayesian inference for ARFIMA

processes. Nonlinear Processes in Geophysics Discussions 2, 573�618.

Henry, M. and P. Za�aroni (2003). The long range dependence paradigm for macroeconomics and �nance.

Theory and applications of long-range dependence, 417�438.

Herbst, E. and F. Schorfheide (2014). Sequential Monte Carlo sampling for DSGE models. Journal of Applied

Econometrics 29 (7), 1073�1098.

Herbst, E. P. and F. Schorfheide (2015). Bayesian Estimation of DSGE Models. Princeton University Press.

Holan, S., T. McElroy, and S. Chakraborty (2009). A Bayesian approach to estimating the long memory

parameter. Bayesian Analysis 4 (1), 159�190.

Hosoya, Y. (1996). The quasi-likelihood approach to statistical inference on multiple time-series with long-

range dependence. Journal of Econometrics 73 (1), 217�236.

Hosoya, Y. (1997). A limit theory for long-range dependence and statistical inference on related models.

The Annals of Statistics, 105�137.

Hsu, N.-J. and F. J. Breidt (2003). Bayesian analysis of fractionally integrated ARMA with additive noise.

Journal of Forecasting 22 (6-7), 491�514.

Justiniano, A., G. E. Primiceri, and A. Tambalotti (2011). Investment shocks and the relative price of

investment. Review of Economic Dynamics 14 (1), 102�121.

Kass, R. E. and A. E. Raftery (1995). Bayes factors. Journal of the American Statistical Association 90 (430),

773�795.

Koop, G. and D. Korobilis (2010). Bayesian multivariate time series methods for empirical macroeconomics.

Foundations and Trends in Econometrics 3 (4), 267�358.

Koop, G., E. Ley, J. Osiewalski, and M. F. Steel (1997). Bayesian analysis of long memory and persistence

using ARFIMA models. Journal of Econometrics 76 (1), 149�169.

Koop, G. M. (2013). Forecasting with medium and large Bayesian VARs. Journal of Applied Economet-

rics 28 (2), 177�203.

Liseo, B., D. Marinucci, and L. Petrella (2001). Bayesian semiparametric inference on long-range dependence.

Biometrika 88 (4), 1089�1104.

34



Litterman, R. B. (1986). Forecasting with Bayesian vector autoregressions � �ve years of experience. Journal

of Business & Economic Statistics 4 (1), 25�38.

Lovcha, Y. and A. Perez-Laborda (2015). The hours worked�productivity puzzle: Identi�cation in a fractional

integration setting. Macroeconomic Dynamics 19 (7), 1593�1621.

Pai, J. S. and N. Ravishanker (1998). Bayesian analysis of autoregressive fractionally integrated moving-

average processes. Journal of Time Series Analysis 19 (1), 99�112.

Plagborg-Møller, M. (2016). Bayesian inference on structural impulse response functions. Technical report,

Harvard University.

Ravishanker, N. and B. K. Ray (1997). Bayesian analysis of vector ARFIMA processes. Australian Journal

of Statistics 39 (3), 295�311.

Ravishanker, N. and B. K. Ray (2002). Bayesian prediction for vector ARFIMA processes. International

Journal of Forecasting 18 (2), 207�214.

Sala, L. (2015). DSGE models in the frequency domains. Journal of Applied Econometrics 30 (2), 219�240.

Schmitt-Grohé, S. and M. Uribe (2012). What's news in business cycles. Econometrica 80 (6), 2733�2764.

Sela, R. J. and C. M. Hurvich (2009). Computationally e�cient methods for two multivariate fractionally

integrated models. Journal of Time Series Analysis 30 (6), 631�651.

Smets, F. and R. Wouters (2007). Shocks and frictions in US business cycles: A Bayesian DSGE approach.

American Economic Review 97 (3), 586�606.

Sowell, F. (1989a). A decomposition of block Toeplitz matrices with applications to vector time series.

Technical report, Carnegie Mellon GSIA.

Sowell, F. (1989b). Maximum likelihood estimation of fractionally integrated time series models. Technical

report, Carnegie Mellon GSIA.

Tamaki, K. (2008). The Bernstein-von Mises theorem for stationary processes. Journal of the Japan Statistical

Society 38 (2), 311�323.

Tschernig, R., E. Weber, and R. Weigand (2013). Long-run identi�cation in a fractionally integrated system.

Journal of Business & Economic Statistics 31 (4), 438�450.

Uhlig, H. (2005). What are the e�ects of monetary policy on output? Results from an agnostic identi�cation

procedure. Journal of Monetary Economics 52 (2), 381�419.

35



A Proofs

A.1 Proposition 1

The frequency-domain likelihood for the FIVAR process is:

L̂FIV AR
(
zT | θ

)
=

K∏
k=1

π−ndet (fFIV AR (ωk | θ))−1 exp
{
−z∗kfFIV AR (ωk | θ)−1 zk

}
. (A.1)

Notice:

det (fFIV AR (ωk | θ))−1 = det
(
D (exp {−iωk})−1 fV AR (ωk | θ) D (exp {iω})−1

)−1
= det (D (exp {−iωk})) det (D (exp {iωk})) det (fV AR (ωk | θ))−1 . (A.2)

Also:

z∗kfFIV AR (ωk | θ)−1 zk = z∗kD (exp {iωk}) fV AR (ωk | θ)−1 D (exp {−iωk}) zk

= z̃∗kfV AR (ωk | θ)−1 z̃k. (A.3)

Hence:

L̂FIV AR
(
zT | θ

)
=

[
K∏
k=1

det (D (exp {−iωk})) det (D (exp {iωk}))

]

×

[
K∏
k=1

π−ndet (fV AR (ωk | θ))−1 exp
{
−z̃∗kfV AR (ωk | θ)−1 z̃k

}]
. (A.4)

The second term in square brackets is identical to L̂V AR
(
z̃T | θ

)
. To simplify the �rst term in square

brackets, notice that, because D (exp {iω}) and D (exp {−iω}) are diagonal:

det (D (exp {−iω})) det (D (exp {iω})) =

 n∏
j=1

(1− exp {−iω})δj
 n∏

j=1

(1− exp {iω})δj


=

n∏
j=1

[(1− exp {−iω}) (1− exp {iω})]δj

= [(1− exp {−iω}) (1− exp {iω})]
∑n
j=1 δj

= [2− 2 cos (ω)]
∑n
j=1 δj . (A.5)
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Hence:

K∏
k=1

det (D (exp {−iωk})) det (D (exp {iωk})) =

K∏
k=1

[2− 2 cos (ωk)]
∑n
j=1 δj

=

(
K∏
k=1

[2− 2 cos (ωk)]

)∑n
j=1 δj

= κ
∑n
j=1 δj , (A.6)

where κ ≡
∏K
k=1 [2− 2 cos (ωk)].

A.2 Proposition 2

We will begin by justifying equations (3.17), (3.18), and (3.19). By identity:

p̃
(
θ | xT

)
= p̃

(
δ | xT

)
p̃
(
Qe | δ,xT

)
p̃
(
a | Qe, δ,x

T
)
. (A.7)

For equations (3.17), (3.18), and (3.19) to be true, it must be the case that: p̃
(
δ | xT

)
is proportional

to (3.17), p̃
(
Qe | δ,xT

)
is proportional to the kernel of a Wishart distribution, and p̃

(
a | Qe, δ,x

T
)
is

proportional to the kernel of a normal distribution. It is therefore su�cient to show:

p̃
(
θ | xT

)
∝ p (δ)κ1

′δ det
(
Q̂a

)−n2
det
(
Q̂e

) ν+T−m
2

× det
(
Q̂e

)− ν+T−m2

det (Qe)
ν+T−m−n−1

2 exp

{
−1

2
tr

{(
1

ν + T −m
Q̂e

)−1
Qe

}}

× det
(
Q̂a ⊗Qe

) 1
2

exp

{
−1

2
(a− â)

′
(
Q̂a ⊗Qe

)
(a− â)

}
, (A.8)

where the factor of proportionality abstracts from terms that do not depend on θ.

Let ā ≡ vec
(
Ā
)
. The prior for the VAR parameters (Qe,a) takes the form:

p (Qe) ∝ det (Qe)
ν−n−1

2 exp

{
−1

2
tr

{(
1

ν
Q̄e

)−1
Qe

}}
(A.9)

p (a | Qe) ∝ det (Qa ⊗Qe)
1
2 exp

{
−1

2
(a− ā)

′
(Qa ⊗Qe) (a− ā)

}
. (A.10)

We can write the quadratic that appears in p (a | Qe) as:

(a− ā)
′
(Qa ⊗Qe) (a− ā) = a′ (Qa ⊗Qe) a− 2a′ vec

(
QeĀQa

)
+ tr

{
ĀQaĀ

′Qe

}
. (A.11)
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Combining the above with the fact that det (Qa ⊗Qe)
1
2 = det (Qa)

nm
2 det (Qe)

n
2 ∝ det (Qe)

n
2 allows us to

write the prior over (Qe,a) as:

p (Qe) p (a | Qe) ∝ det (Qe)
ν−n−1

2 exp

{
−1

2
tr
{(
νQ̄−1e + ĀQaĀ

′)Qe

}}
×det (Qe)

nm
2 exp

{
−1

2

(
a′ (Qa ⊗Qe) a− 2a′ vec

(
QeĀQa

))}
. (A.12)

We can write the quadratic form that appears in the VAR likelihood as:

T∑
t=m

(
x̃t −

m∑
`=1

A`x̃t−`

)′
Qe

×

(
x̃t −

m∑
`=1

A`x̃t−`

)
= vec

(
Ỹ′ −AX̃′

)′
(IT−p ⊗Qe) vec

(
Ỹ′ −AX̃′

)
= tr

{
Ỹ′ỸQe

}
− 2 vec

(
QeỸ

′X̃
)

a + a′
(
X̃′X̃⊗Qe

)
a. (A.13)

Writing the quadratic form in this way allows us to write the VAR time-domain likelihood as:

LV AR
(
x̃T | θ

)
∝ det (Qe)

T−m
2 exp

{
−1

2
tr
{

Ỹ′ỸQe

}}
× exp

{
−1

2

[
a′
(
X̃′X̃⊗Qe

)
a− 2a′ vec

(
QeỸ

′X̃
)]}

. (A.14)

Combining the above expressions with some algebra gives us:

LV AR
(
x̃T | θ

)
×

p (Qe) p (a | Qe) ∝ det (Qe)
ν+T−m−n−1

2 exp

{
−1

2
tr
{(
νQ̄−1e + ĀQaĀ

′ + Ỹ′Ỹ
)

Qe

}}
×det (Qe)

nm
2 exp

{
−1

2

[
a′
(
Q̂a ⊗Qe

)
a− 2a′ vec

(
QeÂQ̂a

)]}
, (A.15)

where we have invoked the de�nitions of Â and Q̂a. Note that we can complete the square for the quadratic:

a′
(
Q̂a ⊗Qe

)
a− 2a′ vec

(
QeÂQ̂a

)
= (a′ − â′)

(
Q̂a ⊗Qe

)
(a− â)− tr

{
ÂQ̂aÂ

′Qe

}
. (A.16)

Also:

det (Qe)
nm
2 = det

(
Q̂a

)−n2
det
(
Q̂a

)n
2

det (Qe)
nm
2 = det

(
Q̂a

)−n2
det
(
Q̂a ⊗Qe

) 1
2

. (A.17)
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Hence:

LV AR
(
x̃T | θ

)
×

p (Qe) p (a | Qe) ∝ det
(
Q̂e

) ν+T−m
2

det
(
Q̂a

)−n2
×det

(
Q̂e

)− ν+T−m2

det (Qe)
ν+T−m−n−1

2 exp

{
−1

2
tr

{(
1

ν + T −m
Q̂e

)−1
Qe

}}

×det
(
Q̂a ⊗Qe

) 1
2

exp

{
−1

2
(a′ − â′)

(
Q̂a ⊗Qe

)
(a− â)

}
. (A.18)

Finally, Proposition 1 allows us to write:

p̃
(
θ | xT

)
∝ L̃FIV AR

(
x̃T | θ

)
p (δ) p (Qe) p (a | Qe)

= κ1
′δLV AR

(
x̃T | θ

)
p (δ) p (Qe) p (a | Qe) . (A.19)

Combining equations (A.18) and (A.19) yields (A.8), thereby proving the claim.

It remains to characterize the conditional distribution of Qe, given δ and a. Notice that the hybrid

posterior kernel (A.8) reduces to:

p̃
(
θ | xT

)
∝ p (δ)κ1

′δ det (Qe)
ν+T+(n−1)m−n−1

2 exp

{
−1

2
tr
{

(ν + T −m) Q̂−1e Qe

}}
× exp

{
−1

2
(a− â)

′
(
Q̂a ⊗Qe

)
(a− â)

}
, (A.20)

where the above uses the fact that det
(
Q̂a ⊗Qe

) 1
2

= det
(
Q̂a

)n
2

det (Qe)
nm
2 . Note that:

(a− â)
′
(
Q̂a ⊗Qe

)
(a− â) = tr

{(
A− Â

)′
Qe

(
A− Â

)
Q̂a

}
= tr

{(
A− Â

)
Q̂a

(
A− Â

)′
Qe

}
. (A.21)

Hence:

p̃
(
θ | xT

)
∝ det (Qe)

ν+T+(n−1)m−n−1
2

× exp

{
−1

2
tr

{[(
1

ν + T −m
Q̂e

)−1
+
(
A− Â

)
Q̂a

(
A− Â

)′]
Qe

}}
, (A.22)

where the factor of proportionality abstracts from terms that do not depend on Qe. The above is the kernel

of a Wishart distribution with mean Q̃e and ν + T + (n− 1)m degrees of freedom.
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A.3 Proposition 3

Recall that the hybrid posterior kernel is given by equation (A.20). To maximize p̃
(
θ | xT

)
, we will concen-

trate out a, given δ and Qe; then, we will concentrate out Qe, given δ. Clearly, from inspecting equation

(A.20), we see that, given δ and Qe, p̃
(
θ | xT

)
is maximized by setting a = â. Hence, we seek values of δ

and Qe to maximize:

p (δ)κ1
′δ det (Qe)

ν+T+(n−1)m−n−1
2 exp

{
−1

2
tr
{

(ν + T −m) Q̂−1e Qe

}}
. (A.23)

Taking a �rst-order condition with respect to Qe and rearranging gives us:

Qe =
ν + T −m+ (m− 1)n− 1

ν + T −m
Q̂e, (A.24)

which maximizes p̃
(
θ | xT

)
, given a value of δ. (Recall from equation (3.15) that Q̂e contains δ.) Plugging

the above back into equation (A.23) shows us that maximizing p̃
(
θ | xT

)
entails choosing δ to maximize:

p (δ)κ1
′δ det

(
ν + T −m+ (m− 1)n− 1

ν + T −m
Q̂e

) ν+T+(n−1)m−n−1
2

exp

{
−ν + T + (n− 1)m− n− 1

2

}
,

(A.25)

which is proportional to the objective function in equation (3.22).
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B Additional Results

B.1 Details for Computing the MDD

To implement the modi�ed harmonic mean estimator (4.11), we will construct the density f (·) using standard

parametric families that resemble the hybrid posterior. We do not take f (·) to be proportional to the hybrid

posterior itself because p̃
(
δ | xT

)
is a non-standard distribution: Although we know that this density is

proportional to equation (3.17), the normalizing constant is not available in closed form. We will therefore

specify f (·) using normal and Wishart densities, while exploiting the structure of the hybrid posterior and

truncating the tails, along the lines of Geweke (1999). Let c (· | ψ) be the inverse CDF of a chi-squared

distribution with ψ degrees of freedom. For η ∈ (0, 1], de�ne:

f̃ (θ) ≡ f̃δ (δ) f̃Q (Qe | δ) f̃A (a | Qe, δ) (B.1)

f̃δ (δ) ≡ 1

η
ϕ (δ | δ◦,Σδ) I

[
(δ − δ◦)

′
Σ−1δ (δ − δ◦) ≤ c (η | n)

]
(B.2)

f̃Q (Qe | δ) ≡ 1

η
p̃
(
Qe | δ,xT

)
I

[
1′n×1Qe1n×1
1

ν+T−m1′n×1Q̂e1n×1
≤ c (η | ν + T −m)

]
(B.3)

f̃A (a | Qe, δ) ≡ 1

η
p̃
(
a | δ,xT

)
I
[
(a− â)

′
(
Q̂a ⊗Qe

)
(a− â) ≤ c

(
η | n2m

)]
, (B.4)

where ϕ (· | µ,Σ) is a Gaussian density with mean µ and variance Σ, and δ◦ and Σδ are de�ned as in

equation (4.3). Notice that f̃ (θ) is a proper probability density, and it emulates the shape of the hybrid

posterior: f̃δ (δ) is a truncated Gaussian approximation to p̃
(
δ | xT

)
, and f̃Q (Qe | δ) and f̃A (a | Qe, δ)

are truncated versions of p̃
(
Qe | δ,xT

)
and p̃

(
a | Qe, δ,x

T
)
. By construction, f̃δ, f̃Q, and f̃A trim the

most extreme 100 (1− η) percent of draws from either the multivariate normal distribution or the Wishart

distribution. However, these densities are not truncated to the stationary region of the parameter space.

Hence, we will specify f (·) as:

f (θ) ≡
f̃ (θ) I

[
δ ∈

(
− 1

2 ,
1
2

)n
,a ∈ A

]
Pf̃
[
δ ∈

(
− 1

2 ,
1
2

)n
,a ∈ A

] , (B.5)

where A is the subset of Rn2m that makes the autoregressive coe�cients stationary. We can evaluate the

numerator of the above expression easily, but we need to estimate the probability in the denominator. To

do so, we can just take a large number of draws from f̃ (θ), which is straightforward, and compute the

probability that the draws are in the stationary region of the parameter space.

In practice, we set η = .95, although we experiment with several other values to make sure the results

aren't too sensitive. Also, to avoid issues with numerical over�ow, we evaluate the MDD on a log scale.

That is, we de�ne:
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k (θ) ≡ L
(
xT | θ

)
p (θ) (B.6)

K ≡ max
i

{
log
(
f
(
θ(i)
))
− log

(
k
(
θ(i)
))}

, (B.7)

and we implement equation (4.11) by computing:

log
(
p
(
xT
))
≈ − log

(
1

N

N∑
i=1

f
(
θ(i)
)

k
(
θ(i)
))

= −K − log

(
1

N

N∑
i=1

exp
{

log
(
f
(
θ(i)
))
− log

(
k
(
θ(i)
))
−K

})
. (B.8)

B.2 Hybrid vs. Exact Posterior

Here, we compare results generated using draws from the hybrid posterior and draws from the exact, time-

domain posterior. Because θ is high-dimensional, it's not practical to display all the marginal distributions,

much less all the contours of the joint distribution. We will therefore focus on two aspects of the posteriors:

the log posterior density and the distribution of impulse responses.

Figure 6 compares the log density of the exact, time-domain posterior to the log density of the hybrid

posterior for all four models estimated in the paper. Each blue dot corresponds to a draw from the exact

posterior, generated by the sequential importance sampler. The black line is the 45-degree line. For Models

I-IV, the correlation coe�cients between the log density of the exact posterior and the log density of the

hybrid posterior are, respectively, .985, .972, .971, and .973. These results suggest that p̃
(
θ | xT

)
provides a

reasonable numerical approximation to p
(
θ | xT

)
for �typical� values of θ.

Looking at the approximation errors in the impulse response functions serves two purposes, one economic

and one statistical. First, by looking at the responses to identi�ed technology shocks, we can see whether the

hybrid and exact posteriors lead to comparable inferences about an object of economic substance. Second,

although the impulse responses from the non-technology innovations do not have clear economic interpreta-

tions, they still have statistical content as a particular normalization of the Wold moving-average represen-

tation. That is, the impulse responses are equal to the coe�cients of the moving-average representation, so

they are su�cient statistics for characterizing the data-generating process. Consequently, we can see whether

the hybrid posterior is comparable to the exact posterior for capturing the statistical properties of the data.

For the bivariate models, the hybrid posterior provides an excellent approximation. Figures 7 and 8 show

the distributions of impulse responses for Models I and II. (�Shock 1� is the TFP shock, and �shock 2� is

an innovation that is orthogonal to the TFP shock.) Besides doing a good job of capturing the statistical
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properties of the models, the hybrid posterior generates virtually the exact same beliefs about the e�ects of

TFP shocks as the exact posterior. To summarize the larger models, Figures 9 and 10 show the distributions

of impulse responses for Models III and IV. (�Shock 1� is the IST shock, �shock 2� is the TFP shock, and the

remaining �shocks� are innovations that are orthogonal to each other and to the identi�ed technology shocks.)

Now, with more variables and more parameters, there is a smattering of slight discrepancies between the

hybrid and exact posteriors. However, any di�erences are su�ciently small that an econometrician would

draw the same substantive conclusions about the economy's dynamics, regardless of whether she formed her

beliefs using the exact posterior or the hybrid approximation to it.

B.3 Results from Model III

As with the bivariate models, estimating the larger models with a FIVAR yields many results that are robust

to whether log hours are assumed to be stationary in levels or in di�erences. Figure 11 shows the impulse

responses from a TFP shock when Model III is estimated with a FIVAR (in red) and with a VAR (in blue).

The FIVAR results in Figure 11 look similar to those in Figure 4. The posterior median from the VAR shows

that hours drop on impact, even when they enter in levels, although the decline is less pronounced than for

the VAR in Model IV, which has hours in di�erences.

Figure 12 shows the impulse responses from a IST shock for Model III. For the FIVARs, the IST responses

show more di�erences between Models III and IV than the TFP responses, but many of the qualitative

predictions are the same. The biggest di�erence is that the FIVAR shows a decline in hours for Model III,

but a nearly �at hours response for Model IV. But as with Model IV, Model III shows clear di�erences

between the FIVAR and VAR. Speci�cally, the VAR predicts a negative response for interest rates, whereas

the the FIVAR predicts a weakly positive response. Also, the VAR predicts a stronger decline in hours.

Table 4 shows the variance decompositions for Model III, and the results from the FIVAR are broadly

similar to the results from estimating Model IV with a FIVAR. At business-cycle frequencies, the main

di�erence between the FIVAR versions of Model III and Model IV is that the latter attributes more of

the variance in RPI growth to IST shocks. Relative to Model IV, Model III exhibits di�erences between

the FIVAR and the VAR that are more pronounced along some dimensions. At business-cycle frequencies,

the VAR for Model III suggests that IST shocks are more important for explaining output growth and less

important for explaining RPI growth, compared to the VAR for Model IV.
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Figure 7: Hybrid vs. Exact Posterior in Models I

0 5 10 15 20
0.4

0.6

0.8

1
Productivity, shock 1

0 5 10 15 20
-0.5

0

0.5

1
Productivity, shock 2

0 5 10 15 20
-1

-0.5

0

0.5
Hours, shock 1

0 5 10 15 20
0

0.5

1

1.5
Hours, shock 2

Figure 8: Hybrid vs. Exact Posterior in Models II
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Responses, in levels, from a one-standard-deviation positive shock to TFP in Models I (Figure 7) and II (Figure 8).
The red lines represent the exact, time-domain posterior; the blue lines represent the hybrid posterior. Solid lines
represent pointwise posterior median responses; dashed lines represent the 10th and 90th posterior quantiles.
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Figure 11: Impulse Responses from a TFP Shock in Model III
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Responses, in levels, from a one-standard-deviation positive shock to TFP in Model III. The red lines are results
from the FIVAR model; the blue lines are results from a VAR without fractional integration. Solid lines represent
pointwise posterior median responses; dashed lines represent the 10th and 90th posterior quantiles.
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Figure 12: Impulse Responses from an IST Shock in Model III
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Responses, in levels, from a one-standard-deviation negative shock to IST in Model III. The red lines are results
from the FIVAR model; the blue lines are results from a VAR without fractional integration. Solid lines represent
pointwise posterior median responses; dashed lines represent the 10th and 90th posterior quantiles.
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Table 4: Variance Decompositions, Full Models

Model III: FIVAR Model III: VAR

Full Business Low Full Business Low
Spectrum Cycles Frequency Spectrum Cycles Frequency

Output Growth
TFP

8
[4, 13]

5
[2, 13]

29
[16, 46]

11
[6, 22]

9
[4, 19]

51
[29, 68]

IST
8

[4, 18]
5

[1, 13]
20

[5, 41]
27

[12, 45]
22

[7, 43]
21

[7, 46]

Hours Growth
TFP

29
[15, 45]

27
[12, 44]

15
[6, 29]

15
[5, 35]

15
[5, 35]

16
[6, 32]

IST
6

[2, 15]
4

[1, 12]
13

[3, 32]
25

[9, 47]
22

[6, 46]
32

[12, 56]

Productivity
Growth

TFP
39

[24, 56]
38

[24, 55]
80

[59, 91]
31

[14, 54]
33

[17, 53]
67

[38, 87]

IST
5

[2, 12]
4

[1, 10]
11

[1, 31]
11

[5, 21]
9

[3, 18]
10

[2, 39]

In�ation
TFP

14
[2, 34]

14
[2, 34]

15
[2, 37]

38
[14, 65]

42
[19, 64]

37
[11, 67]

IST
15

[3, 42]
12

[3, 30]
19

[2, 50]
17

[3, 60]
10

[2, 38]
20

[2, 67]

Interest Rates
TFP

21
[5, 44]

20
[5, 39]

21
[5, 45]

31
[12, 56]

22
[5, 45]

33
[11, 59]

IST
12

[1, 41]
7

[1, 23]
13

[0, 43]
21

[8, 50]
17

[3, 46]
20

[6, 53]

RPI Growth
TFP

3
[0, 11]

3
[0, 13]

1
[0, 6]

9
[2, 28]

11
[2, 33]

5
[0, 18]

IST
56

[33, 78]
52

[25, 76]
84

[70, 94]
26

[13, 49]
16

[5, 42]
71

[55, 82]

Numbers represent the posterior median of the percent contribution of the identi�ed technology shocks to the variance
of each variable coming from oscillations in each frequency band. Numbers in square brackets are the 10th and 90th
posterior quantiles. �Full spectrum� refers to the unconditional variance; �business cycles� refers to the variance due
to oscillations with periods between 1.5 and 8 years; �low frequency� refers to the variance due to oscillations with
periods longer than 8 years. All percentages are rounded to the nearest integer.
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