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1. Introduction

Bayesian Macroeconometrics in R (‘BMR’) is a collection of R and C++ routines for estimating

Bayesian Vector Autoregressive (BVAR) and Dynamic Stochastic General Equilibrium (DSGE)

models in the R statistical environment. Designed to be a flexible and self-contained resource

for these methods, the BMR package incorporates several popular prior forms for BVAR mod-

els, including models with time-varying parameters, and utilizes the Armadillo C++ linear

algebra library—linked with R via the RCPPARMADILLO interface of Francois et al. (2012)—to

run computationally expensive Bayesian simulation algorithms.

The BMR project was inspired by several existing software libraries. First, Koop and Koro-

bilis (2010), who provided extensive Matlab routines for estimating BVAR models; Adjemian

et al. (2011)’s DYNARE, a set of Matlab and Octave routines for estimating DSGE models; and

YADA, written by the DSGE team at the European Central Bank and maintained by Warne

(2012). The BMR package brings these popular macroeconometric tools to R, and all graphs

produced by BMR use Wickham (2009)’s excellent GGPLOT2 package.

This accompanying document begins with a brief introduction to Bayesian econometrics

and Bayesian Vector Autoregression models. We first derive a useful likelihood factorisation

of the classical VAR model that will be used throughout this document. We then move to the

problem of simulating from the posterior distribution of BVAR parameters, with three different

prior forms discussed: the normal-inverse-Wishart prior, the so-called Minnesota prior in the

spirt of Doan et al. (1983) and Litterman (1986), and the steady-state prior of Villani (2009).

After outlining the input syntax to the BMR BVAR functions, several brief examples are given

to illustrate the code-at-work. The final BVAR model we consider is one with time-varying

parameters.

The second-half of the document is dedicated to the solution, simulation, and estimation

of DSGE models. The solution methods available in BMR include C++ implementations of

Uhlig (1999)’s method of undetermined coefficients and Chris Sims’ gensys solver. After de-

scribing the solvers, we turn to Bayesian estimation using a state-space and filter approach,

and posterior simulation using a Markov Chain Monte Carlo algorithm. The document con-

cludes with three working examples of DSGE models, their input into BMR, and, finally, a

description of the hybrid DSGE-VAR model.
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1.1. Bayesian Econometrics

We begin with a brief introduction to Bayesian econometrics. For those interested in an in-

depth textbook treatment, see Geweke (2005); the reader might also be interested in Canova

(2007), which provides a shorter, more macroeconomics-inspired treatment with BVAR and

DSGE models, and (Dave and DeJong, 2007, Ch. 9), which covers DSGE estimation.1

Denote an arbitrary model by Mi ∈ M ⊂$ , where M is a general class of models and$

being the set of all models. The prior density, given by

p(θ |Mi), (1)

reflects the researcher’s a priori beliefs about the k-dimensional parameter vector θ ∈ Θ ⊆ !k.

The exact form of the joint prior (1) will depend on the model in question; for example,

when working with Bayesian VARs, the functional form(s) assigned to p(θ |Mi) will be based

on conditional conjugacy considerations, where the conditional posterior distributions are

targeted to be from a family of well-known parametric distributions, and, for DSGE models,

the choice of prior is largely based on the assumed support for each parameter.

The density of our observed data, & = & T := {&t}
T
t=1, conditional on the parameter

vector, is given by

p(& |θ , Mi). (2)

There is an unknown dependence structure between the observations, but we can factorise

the joint data density as

p(& |θ , Mi) = p(&1|θ , Mi)

T∏

t=2

p(&t |& t−1θ , Mi)

When & is Markov, this becomes

p(& |θ , Mi) = p(&1|θ , Mi)

T∏

t=2

p(&t |&t−1,θ , Mi)

where &t−1 (with θ and Mi) forms a sufficient statistic for the predictive density of &t .

1For non-textbook references, and examples of Bayesian methods in macroeconomics, see Fernández-Villaverde
et al. (2009) and Del-Negro and Schorfheide (2011).
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By the definition of conditional probability, we can factorise the joint density of the pa-

rameters and data into two equivalent forms:

p(& ,θ |Mi) = p(& |θ , Mi)p(θ |Mi)

p(& ,θ |Mi) = p(θ |& , Mi)p(& |Mi)

Equating these, we have

p(θ |& , Mi)p(& |Mi) = p(& |θ , Mi)p(θ |Mi)

⇒ p(θ |& , Mi) =
p(& |θ , Mi)p(θ |Mi)

p(& |Mi)
(3)

Equation (3) is commonly referred to as Bayes’ Theorem. It states that the posterior distri-

bution of the parameters (θ), given the observed data (& ) and a model (Mi), is equal to the

density of our observed data times the prior density of the parameters, divided by a normalis-

ing ‘constant’, p(& |Mi). The ‘constant’ term is the marginal density of & (also known as the

marginal data density, or marginal likelihood), where

p(& |Mi) =

∫

Θ

p(& |θ , Mi)p(θ |Mi)dθ =

∫

Θ

p(& ,θ |Mi)dθ . (4)

In general, this integral cannot be evaluated analytically, but can be approximated using

quadrature or Monte Carlo integration. p(& |Mi) is important for model comparison and how

we judge model ‘fit’. As p(& |Mi) is constant for any θ , we can see that

p(θ |& , Mi)∝ p(& |θ , Mi)p(θ |Mi) ≡+ (θ |& , Mi)

where ‘∝’ denotes proportionality and+ (θ |& , Mi) is the kernel of the posterior distribution—

i.e., it describes the posterior distribution up to an unknown constant.

If the density p(& |θ , Mi) can be described (at least up to an unknown constant) by the

likelihood function , (θ |& , Mi), we can give the final form of the posterior kernel as

p(θ |& , Mi)∝, (θ |& , Mi)p(θ |Mi). (5)

Equation (5) is the familiar ‘likelihood times prior’ of Bayesian econometrics.
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2. Introduction to Bayesian VARs

An m variable VAR(p) model with T observations is denoted by

Yt = Φ+

p∑

i=1

Yt−iβi + ϵt (6)

where Yt are the observations at time t ∈ [1, T ], Φ is a matrix of intercepts, β is a matrix of

coefficients, and ϵ are the disturbance terms. The model can be written in stacked form as

Y = Zβ + ϵ (7)

with matrices: Y(T×m), Z(T×(1c+m·p)), β((1c+m·p)×m), and ϵ(T×m), where 1c is equal to 1 if there

are intercept (constant) terms, zero otherwise, and β includesΦ in its first row. Canova (2007)

and Geweke (2005) note a useful, alternative vectorized form for (7)

y = ("m ⊗ Z)α+ ε (8)

where α = vec(β) (vec being the column-stacking operator), y((T×m)×1) = vec(Y ) is the

stacked matrix of observations, ε((T×m)×1) ∼ (0,Σ ⊗ "T ) is the stacked vector of disturbance

terms, "T is an identity matrix of size T × T , and ⊗ is the Kronecker product.2 Assuming the

disturbance term is normally distributed, the likelihood function is then

, (α,Σ|y, Z) = (2π)−T ·m/2|Σ⊗"T |−1/2 exp

$
−

1

2
(y − ("m ⊗ Z)α)⊤(Σ−1 ⊗ "T )(y − ("m ⊗ Z)α)

%
.

(9)

where | · | denotes a matrix determinant. The log-likelihood is then

ln, = −
T ×m

2
(2π)−

1

2
ln |Σ⊗ "T |−

$
1

2
(y − ("m ⊗ Z)α)⊤(Σ−1 ⊗ "T )(y − ("m ⊗ Z)α)

%

∝−
1

2
ln |Σ⊗ "T |−

$
1

2
(y − ("m ⊗ Z)α)⊤(Σ−1 ⊗ "T )(y − ("m ⊗ Z)α)

%
(10)

To factorise this expression further, examine the properties of the bracketed term above.

First, note that if Σ is symmetric positive-definite, we can factorise as Σ = ΩΩ⊤.3 Also note

2Recall that the Kronecker product of two matrices, say X and Y , with dimensions a× b and c × d, is a matrix

of size (a× c)× (b × d). Also recall the connection between vec operators and Kronecker products: vec(ABC) =
(C⊤ ⊗ A)vec(B). Thus, vec(Zβ"m) = ("

⊤
m
⊗ Z)vec(β).

3This follows from an eigen decomposition of Σ=QΛQ⊤, where Λ is diagonal with elements λ ∈ !++ and Q is
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that, when multiplied out, the brackets will yield a scalar value, so the result is invariant to

application of the trace function. Now, expand the brackets to give

(y − ("m ⊗ Z)α)⊤(Σ−1 ⊗ "T )(y − ("m ⊗ Z)α)

= (y − ("m ⊗ Z)α)⊤(Ω−1 ⊗ "T )⊤(Ω−1 ⊗ "T )(y − ("m ⊗ Z)α)

= [(Ω−1 ⊗ "T )y − (Ω−1 ⊗ Z)α]⊤[(Ω−1 ⊗ "T )y − (Ω−1 ⊗ Z)α] (11)

which used the fact that Σ−1 = (ΩΩ⊤)−1 = (Ω⊤)−1
Ω
−1 = (Ω−1)⊤Ω−1. Define

&α := (Σ−1 ⊗ Z⊤Z)−1(Σ−1 ⊗ Z)⊤ y (12)

Add and subtract (Ω−1 ⊗ Z)&α to each of the square brackets in (11),

[(Ω−1 ⊗ "T )y + (Ω−1 ⊗ Z)(&α−α− &α)]⊤[(Ω−1 ⊗ "T )y + (Ω−1 ⊗ Z)(&α−α− &α)]

= [(Ω−1 ⊗ "T )y − (Ω−1 ⊗ Z)&α]⊤[(Ω−1 ⊗ "T )y − (Ω−1 ⊗ Z)&α]

+ (&α−α)⊤(Σ−1 ⊗ Z⊤Z)(&α− α)

Thus, we can re-write the log-likelihood as

ln, ∝−
T

2
ln |Σ|−

$
1

2
(α− &α)⊤(Σ−1 ⊗ Z⊤Z)(α− &α)

%

−
$

1

2
tr
'
[(Ω−1 ⊗ "T )y − (Ω−1 ⊗ Z)&α]⊤[(Ω−1 ⊗ "T )y − (Ω−1 ⊗ Z)&α]

(%

by also noting that ln (|Σ⊗ "T |) = ln
)
|Σ|T |"T |m

*
= T ln |Σ|+m ln |"T |= T ln |Σ|; recall that the

determinant of the identity matrix is 1 (the natural log of which is zero).

For notational convenience, define1 := "m⊗Z . With this change, recall the mixed-product

property of Kronecker products (which we also used above),

("m ⊗ Z)⊤(Σ−1 ⊗ "T )("m ⊗ Z) = ("m ⊗ Z)⊤(Σ−1
"m ⊗ "T Z)

= ("⊤mΣ
−1
"m ⊗ Z⊤"T Z)

= (Σ−1 ⊗ Z⊤Z)

a unitary matrix, Q⊤Q =QQ⊤ = ". Σ= Σ⊤ =QΛ1/2
Λ

1/2Q⊤ =QΛ1/2
)
QΛ1/2

*⊤
:= ΩΩ⊤ =: Ω⊤Ω.
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We will also use the transformations:

(Σ−1 ⊗ Z⊤Z) = 1⊤(Σ−1 ⊗ "T )1

and

&α = (Σ−1 ⊗ Z⊤Z)−1(Σ−1 ⊗ Z)⊤ y

=
)
1⊤(Σ−1 ⊗ "T )1

*−11⊤(Σ−1 ⊗ "T )y

Going back to the log-likelihood,

ln, ∝−
T

2
ln |Σ|−

$
1

2
(α− &α)⊤1⊤(Σ−1 ⊗ "T )1 (α− &α)

%

−
$

1

2
tr
'
[(Ω−1 ⊗ "T )y − (Ω−1 ⊗ "T )1 &α]⊤[(Ω−1 ⊗ "T )y − (Ω−1 ⊗ "T )1 &α]

(%

= −
T

2
ln |Σ|−

$
1

2
(α− &α)⊤1⊤(Σ−1 ⊗ "T )1 (α− &α)

%

−
$

1

2
tr
'
[(Ω−1 ⊗ "T )(y −1 &α)]⊤[(Ω−1 ⊗ "T )(y −1 &α)]

(%

= −
T

2
ln |Σ|−

$
1

2
(α− &α)⊤1⊤(Σ−1 ⊗ "T )1 (α− &α)

%

−
$

1

2
tr
'
[(y −1 &α)⊤(Ω−1 ⊗ "T )⊤(Ω−1 ⊗ "T )(y −1 &α)]

(%

= −
T

2
ln |Σ|−

$
1

2
(α− &α)⊤1⊤(Σ−1 ⊗ "T )1 (α− &α)

%

−
$

1

2
tr
'
[(y −1 &α)⊤(Σ−1 ⊗ "T )(y −1 &α)

(%

= −
T

2
ln |Σ|−

$
1

2
(α− &α)⊤1⊤(Σ−1 ⊗ "T )1 (α− &α)

%

−
$

1

2
tr
'
[(y −1 &α)(y −1 &α)⊤(Σ−1 ⊗ "T )

(%

∝ ln (2 (α|&α,Σ,1 , y) 34 (Σ|&α,1 , y)) . (13)

Thus, the joint likelihood of a VAR model is proportional to the product of a conditional normal

distribution (for α) and a conditional inverse-Wishart distribution (for Σ).4

4Remember that the trace function is invariant under cyclic permutations, thus allowing for some change in the
order of multiplication, and the inner-product of conformable vectors is equal to the trace of their outer-product.
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2.1. Gibbs Samplers

Almost all Bayesian VAR estimation procedures use a Gibbs-style sampler, where the hierarchi-

cal structure of the posterior distribution means that iterated sampling from the conditional

posterior distribution of each block of parameters (e.g., α and Σ) is relatively simple. We

take this approach because, in general, the conditional posterior distribution of each block of

parameters then relates to a well-known parametric distribution.

Let θ denote a vector of parameters of interest—e.g., θ = (α,Σ). Our goal is to gen-

erate {θ (h)}H
h=1

, the realization of a Markov Chain, and as H →∞, the resulting empirical

distribution—post a sample burn-in phase—should equal our posterior distribution of interest,

p(θ |& , Mi).
5 This approach, known under the general heading of Markov Chain Monte Carlo

(MCMC) posterior sampling algorithms, centers around selecting a transition density kernel

with an invariant distribution equal to p(θ |& , Mi).

For BVARs, instead of sampling directly from the joint posterior distribution of θ , we

separate the parameters into blocks and sample by each block of parameters, {θ(b)}Bb=1
∼

+
p(θ(b)|θ−(b),& , Mi)

,B

b=1
, where θ−(b) denotes all blocks other than the bth block. Thus,

Gibbs sampling builds a Markov Chain

+
θ (h)

,H

h=1
∼
$-

p
.
θ(b)|

/
θ (h)
(i)

0b−1

i<b
,
/
θ (h−1)
(i)

0B

i=b+1
,& , Mi

12B

b=1

%H

h=1

the realization of which is equivalent to draws from p(θ |& , Mi).

The choice of parameter blocks is model-dependent, and, in some cases, careful condi-

tioning can induce simple forms to the sampling densities. For the BVAR models considered

here, the Gibbs chain is {θ (h)}H
h=1
∼
+

p
)
α|Σ(h−1),1 , y

*
, p
)
Σ|α(h),1 , y

*,H

h=1
, with a transition

density kernel p(θ (h)|θ (h−1)) = p
)
α(h)|Σ(h−1),1 , y

*
p
)
Σ
(h)|α(h),1 , y

*
.

An alternative approach would be to sample directly from the joint density of the pa-

rameters, though often the joint distribution doesn’t have a well-known functional form with

analytic expressions for the moments of interest. As we will see later in this document, the pa-

rameters of DSGE models are estimated jointly, requiring a different sampling method, namely

the Metropolis-Hastings MCMC algorithm (with Gibbs being a special case of this).

5Sample burn-in refers to discarding an initial number/proportion of draws to eliminate the effects of initial
conditions, allowing the Markov Chain to converge to its invariant distribution; MCMC draws are, in general,
serially correlated.
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2.2. Normal-inverse-Wishart Prior

The first BVAR model we consider is the normal-inverse-Wishart model, where the kernel of

the joint posterior distribution is of α and Σ is

p(α,Σ|1 , y)∝ p(y|1 ,α,Σ)p(α,Σ)

We’ve already derived the data density p(y|1 ,α,Σ) in (13), with the form of the joint prior,

p(α,Σ), left to the econometrician. As noted in the previous section, we will avoid sampling

directly from p(α,Σ|1 , y) as this doesn’t have a well-known functional form (unless we im-

pose a conditional structure on the joint prior).

Instead, we will choose prior distributions such that sampling from p(α|Σ,1 , y) and

p(Σ|α,1 , y) is straightforward; these being a normal and inverse-Wishart distribution, re-

spectively. What follows is a simple derivation of these conditional posterior distributions.

The parameters in the joint prior p(α,Σ) are assumed to be independent, and so can be

factorized to p(α,Σ) = p(α)p(Σ), where

p(α) =2 (ᾱ,Ξα)

= (2π)−(m×p+1)/2|Ξα|−1/2 exp
)
−(α− ᾱ)⊤Ξ−1

α (α− ᾱ)/2
*

(14)

and

p(Σ) = 34 (ΞΣ,γ)

= 2−γm/2π−m(m−1)/4|ΞΣ|γ/2
3

m∏

i=1

Γ [(γ+ 1− i)/2]

4−1

· |Σ|−(γ−m−1)/2 exp

5
−

1

2
tr(ΞΣΣ

−1)

6
(15)

with Γ (·) denoting the gamma function.

The form of the posterior distribution of α and Σ is then proportional to the product of

(13), (14), and (15). The kernel of the conditional distribution of α (for some given Σ) is

thus

p(α|Σ,1 , y)∝ exp

5
−

1

2

'
(α− &α)⊤1⊤(Σ−1 ⊗ "T )1 (α− &α) + (α− ᾱ)⊤Ξ−1

α (α− ᾱ)
(6
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Multiply the brackets out,

(α− &α)⊤1⊤(Σ−1 ⊗ "T )1 (α− &α) + (α− ᾱ)⊤Ξ−1
α (α− ᾱ)

= α⊤1⊤(Σ−1 ⊗ "T )1α−α⊤1⊤(Σ−1 ⊗ "T )1 &α

− &α⊤1⊤(Σ−1 ⊗ "T )1α+ &α⊤1⊤(Σ−1 ⊗ "T )1 &α

+α⊤Ξ−1
α α−α

⊤
Ξ
−1
α ᾱ− ᾱ

⊤
Ξ
−1
α α+ ᾱ

⊤
Ξ
−1
α ᾱ

= α⊤1⊤(Σ−1 ⊗ "T )1α+α⊤Ξ−1
α α−α

⊤
Ξ
−1
α ᾱ− ᾱ

⊤
Ξ
−1
α α+ ᾱ

⊤
Ξ
−1
α ᾱ

−α⊤1⊤(Σ−1 ⊗ "T )1 &α− &α⊤1⊤(Σ−1 ⊗ "T )1α

+ &α⊤1⊤(Σ−1 ⊗ "T )1 &α

Remember that &α :=
)
1⊤(Σ−1 ⊗ "T )1

*−11⊤(Σ−1 ⊗ "T )y, so

(α− &α)⊤1⊤(Σ−1 ⊗ "T )1 (α− &α) + (α− ᾱ)⊤Ξ−1
α (α− ᾱ)

= α⊤1⊤(Σ−1 ⊗ "T )1α+α⊤Ξ−1
α α−α

⊤
Ξ
−1
α ᾱ− ᾱ

⊤
Ξ
−1
α α+ ᾱ

⊤
Ξ
−1
α ᾱ

−α⊤1⊤(Σ−1 ⊗ "T )1
)
1⊤(Σ−1 ⊗ "T )1

*−11⊤(Σ−1 ⊗ "T )y

−
7)
1⊤(Σ−1 ⊗ "T )1

*−11⊤(Σ−1 ⊗ "T )y
8⊤
1⊤(Σ−1 ⊗ "T )1α

+
7)
1⊤(Σ−1 ⊗ "T )1

*−11⊤(Σ−1 ⊗ "T )y
8⊤
1⊤(Σ−1 ⊗ "T )1

×
)
1⊤(Σ−1 ⊗ "T )1

*−11⊤(Σ−1 ⊗ "T )y

= α⊤1⊤(Σ−1 ⊗ "T )1α+α⊤Ξ−1
α α−α

⊤
Ξ
−1
α ᾱ− ᾱ

⊤
Ξ
−1
α α+ ᾱ

⊤
Ξ
−1
α ᾱ

−α⊤1⊤(Σ−1 ⊗ "T )y −
'
1⊤(Σ−1 ⊗ "T )y

(⊤
α+ y⊤(Σ−1 ⊗ "T )y

= α⊤(1⊤(Σ−1 ⊗ "T )1 +Ξ−1
α )α

−α⊤(Ξ−1
α ᾱ+1

⊤(Σ−1 ⊗ "T )y)−
'
Ξ
−1
α ᾱ+1

⊤(Σ−1 ⊗ "T )y
(⊤
α

+ y⊤(Σ−1 ⊗ "T )y + ᾱ⊤Ξ−1
α ᾱ

Finally, if we ‘complete the square,’ we can express the conditional kernel as

p(α|Σ,1 , y)∝ exp

5
−

1

2

'
(α− 9α)⊤9Σ−1

α (α− 9α) + C
(6

(16)
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where

9Σ−1
α = Ξ

−1
α +1

⊤(Σ−1 ⊗ "T )1

9α= 9Σα
)
Ξ
−1
α ᾱ+1

⊤(Σ−1 ⊗ "T )y
*

C = y ′(Σ−1 ⊗ "T )y + ᾱ⊤Ξ−1
α ᾱ− 9α

⊤9Σ−1
α 9α

The conditional posterior distribution of Σ is a little easier to see. Conditional on an α

draw, form the β matrix by recalling that α= vec(β), and note that

tr
'
"T (Y − Zβ)Σ−1 (Y − Zβ)⊤

(
= vec

.)
(Y − Zβ)⊤

*⊤1⊤ :)
Σ
−1
*⊤ ⊗ "T

;
vec (Y − Zβ)

= vec (Y − Zβ)⊤
)
Σ
−1 ⊗ "T

*
vec (Y − Zβ)

Then, the posterior kernel of Σ is

p(Σ|β , Z , Y )∝ |Σ|−T/2|Σ|−(γ−m−1)/2

× exp

5
−

1

2
tr
'
ΞΣΣ

−1
(6

exp

5
−

1

2
tr
'
Σ
−1 (Y − Zβ)⊤ (Y − Zβ)

(6

∝ |Σ|−(T+γ−m−1)/2× exp

5
−

1

2
tr
')
ΞΣ + (Y − Zβ)⊤ (Y − Zβ)

*
Σ
−1
(6

(17)

Thus, we have well-known parametric distributions that define the blocks of our condi-

tional posterior distributions of interest, namely the normal and inverse-Wishart distributions,

p(α|Σ,1 , y) =2
)
9α, 9Σα

*
(18)

p(Σ|β , Z , Y ) = 34
)
ΞΣ + (Y − Zβ)⊤ (Y − Zβ) , T + γ

*
(19)

Sampling from these distributions is a simple task.
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2.3. Minnesota Prior

The primary distinction between the previous model and the so-called Minnesota (or Litter-

man) prior is that Σ, the covariance matrix of the disturbance terms, is fixed before posterior

sampling begins, and this yields a significant decrease in computational burden; the standard

references for this type of model are Doan et al. (1983) and Litterman (1986).

The Minnesota prior sets the Σ matrix to be diagonal, where the diagonal elements come

from equation-by-equation estimation of an AR(p) model for each of the m-variables. That

is, for each variable in the VAR model, we estimate the model assuming that all coefficients,

except their own-lag terms (and a possible constant term), are equal to zero.

Σ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

σ1 0 0 · · · 0

0 σ2 0 · · · 0

0 0 σ3 · · · 0

...
...

. . .
. . .

0 0 0 0 σm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

Let i, j ∈ {1, . . . , m}; with the equation being indexed by i, and the variable indexed by j.

(Koop and Korobilis, 2010, p. 7) define the prior covariance matrix of β as follows:

Ξβi, j
(ℓ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H1/ℓ
2

H2 ·σ2
i /
:
ℓ2 ·σ2

j

;

H3 ·σ2
i

which correspond to own lags, cross-variable lags, and exogenous variables (a constant), re-

spectively, where ℓ ∈ {1, . . . , p}. (Canova, 2007, p. 378) defines a more general version of

this procedure as

Ξβi, j
(ℓ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H1/d(ℓ)

H1 ·H2 ·σ2
j /
)
d(ℓ) ·σ2

i

*

H1 ·H3
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which, again, correspond to own lags, cross-variable lags, and exogenous variables, respec-

tively, where d(ℓ) is the ‘decay’ function; in the previous case, d(ℓ) = ℓ2. Also, note that, for

cross-equation coefficients, the ratio of the variance of each equation has been inverted (i.e.,

σ2
i is the denominator and σ2

j is in the numerator).

The user can choose between two functional forms of d(ℓ), harmonic and geometric decay,

d(ℓ) =

⎧
⎨

⎩

ℓH4

H−ℓ+1
4

respectively, where H4 > 0. (When H4 = 1, we have linear decay d(ℓ) = ℓ.) To select harmonic

decay, one enters “H” in the decay field (including quotation marks) and “G” for geometric.

To select the Koop and Korobilis (2010) version, enter VType = 1 in the Minnesota BVAR

function, and VType = 2 for the Canova (2007) version. (See Section 4.2 for further details.)

Finally, note that the dimensions of Ξβ will be (1c +m · p)×m, which is then vectorised,

and this becomes the main diagonal elements to a new matrix of size ((1c +m · p)×m) ×

((1c +m · p)×m), where all other entries are set to zero.

With Σ fixed (with elements as described above), the posterior distribution of α is similar

to the normal-inverse-Wishart case,

p(α|Σ,1 , Y ) =2
)
9α, 9Σα

*
, (20)

where

9Σ−1
α = Ξ

−1
α +1

⊤(Σ−1 ⊗ "T )1

9α = 9Σα
)
Ξ
−1
α ᾱ+1

⊤(Σ−1 ⊗ "T )y
*

From the description above, we see the rather convenient computational aspect of the

Minnesota prior. The posterior covariance matrix of the coefficients, 9Σα, which will be of size

(1c +m · p) ·m× (1c +m · p) ·m, need only be calculated—and, more importantly, inverted—

once, as Σ is fixed for all sample draws of α; the prior and data won’t change. In BMR, this

implies that a model with a Minnesota prior will be estimated several-hundred times faster

than with a normal-inverse-Wishart prior.
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3. Steady State BVAR

Rather than placing a prior on the intercept vector Φ in (7), Villani (2009) opts to place a prior

directly on the unconditional mean of each series by restating the problem as

(Yt − dtΨ)β(L) = ϵt , (21)

where dtΨ is the unconditional mean—dt is a 1× q matrix of exogenous variables (at time t)

with coefficients Ψq×m—and β(L) is the matrix lag-polynomial6

β(L) = "m −
p∑

i=1

Liβi

We can then rewrite (21) in more familiar form as

Yt = dtΨ +

p∑

i=1

(Yt−i − dt−iΨ)βi + ϵt

In BMR, dt = d ∀t, so the only exogenous variable permitted is a column-vector of ones.7

Let Z = [Yt−1 Yt−2 . . . Yt−p], and ψ= vec(Ψ); we can rewrite the model in full matrix form

as

Y = ιTψ
⊤ + Zβ − (ιT · ι⊤p )("p ⊗Ψ)β + ϵ (22)

with matrices: Y(T×m), Z(T×(m·p)),ψ(m×1), β((m·p)×m), and ϵ(T×m).
8 Imposing the condition that

the eigenvalues of β(L) lie inside the unit circle, we can see how Ψ is a non-linear function of

the standard BVAR setup with Φ and β , Ψ1×m = Φ1×m

)
"m −

∑p
i=1 βi

*−1
.

The estimation procedure in BMR follows that of Warne (2012). The priors for each block

of parameters are

p(ψ) =2
)
ψ̄,Ξψ

*
(23)

p(β) =2
)
β̄ ,Ξβ

*
(24)

p(Σ) = 34 (ΞΣ,γ) (25)

6 L is the backshift operator; i.e., yt L = yt−1, yt L2 = yt−2, . . ., yt Li = yt−i , i ∈ #.
7The reason for this is a technical one, and I direct those looking for a more general implementation to Warne

(2012). (In future implementations, I intend to relax this restriction.)
8The symbol ι denotes a column-vector of ones, the length of which is indicated by a subscript.
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Two restrictions apply to this. First, Ξβ is defined by a simplified version of harmonic decay,

shown in the Minnesota prior section,

Ξβ (ℓ) =
)
H1/ℓ

H4
*
· "m

Second, ΞΣ is set to the maximum likelihood estimate of Σ.

Let Yd and Zd be demeaned series, given by

Yd = Y − ιTΨ

Zd = Z − (ιT · ι⊤p )("p ⊗Ψ)

respectively, and let

ξ= Y − Zβ

ξd = Yd − Zdβ

The conditional posterior distributions of our parameters are

p(ψ|β ,Σ, Z , Y ) =2
) 9ψ, 9Σψ

*
(26)

p(β |ψ,Σ, Z , Y ) =2
) 9β , 9Σβ ⊗Σ

*
(27)

p(Σ|ψ,β , Z , Y ) = 34
:
ΞΣ + ξ

⊤
d ξd + (9β − β̄)⊤Ξ−1

β (
9β − β̄), T +m · p+ γ

;
(28)

where

9ψ = 9Σψ(U⊤vec(Σ−1ξ⊤D) +Ξ−1
ψ ψ̄)

9Σψ =
:
Ξ
−1
ψ + U⊤(D⊤D⊗Σ−1)U

;−1

9β = 9Σβ(Z⊤d Yd +Ξ
−1
β β̄)

9Σβ = (Ξ−1
β + Z⊤d Zd)

−1

with U((m+m·p)×m) =
7
"m β⊤1 β⊤2 · · · β

⊤
p

8⊤
and D(T×(p+1)) =

7
ιT − (ιT · ι⊤p )

8
.
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4. Main BVAR Functions

4.1. Normal-inverse-Wishart Prior

BVARW(mydata,cores=1,coefprior=NULL,p=4,constant=TRUE,

irf.periods=20,keep=10000,burnin=1000,

XiBeta=1,XiSigma=1,gamma=NULL)

• mydata

A matrix or data frame containing the data series used for estimation; this should be of

size T ×m.

• cores

A positive integer value indicating the number of CPU cores that should be used for the

sampling run. Do not allocate more cores than your computer can safely handle! If

in doubt, set cores = 1, which is the default.

• coefprior

A numeric vector of length m, matrix of size (m · p + 1c) × m, or a value of ‘NULL’,

that contains the prior mean-value of each coefficient. Providing a numeric vector of

length m will set a zero prior on all coefficients except the own first-lags, which are set

according to the elements in ‘coefprior’. Setting this input to ‘NULL’ will give a random-

walk-in-levels prior.

• p

The number of lags to include of each variable, where p ∈ #++. The default value is 4.

• constant

A logical statement on whether to include a constant vector (intercept) in the model.

The default is ‘TRUE’, and the alternative is ‘FALSE’.

• irf.periods

An integer value for the horizon of the impulse response calculations, which must be

greater than zero. The default value is 20.

• keep

The number of Gibbs sampling replications to keep from the sampling run.
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• burnin

The sample burn-in length for the Gibbs sampler.

• XiBeta

A numeric vector of length 1 or matrix of size (m · p+1c) ·m× (m · p+1c) ·m comprising

the prior covariance of each coefficient. If the user supplies a scalar value, then the prior

becomes "(m·p+1c)·m ·Ξβ . The structure of Ξβ corresponds to vec(β).

• XiSigma

A numeric vector of length 1 or matrix of size m×m that contains the location matrix

of the inverse-Wishart prior. If this is a scalar then ΞΣ is "(m·p+1c)m
·ΞΣ.

• gamma

A numeric vector of length 1 corresponding to the prior degrees of freedom of the error

covariance matrix. The minimum value is m+ 1, and this is the default value.

The function returns an object of class ‘BVARW’, which contains:

• Beta

A matrix of size (m · p+1c)×m containing the posterior mean of the coefficient matrix

(β).

• BDraws

An array of size (m · p+ 1c)×m× keep which contains the post burn-in draws of β .

• Sigma

A matrix of size m×m containing the posterior mean estimate of the residual covariance

matrix (Σ).

• SDraws

An array of size m×m× keep which contains the post burn-in draws of Σ.

• IRFs

A four-dimensional object of size irf.periods × m × keep × m containing the impulse

response function calculations; the first m refers to responses to the last m shock.

• data
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The data used for estimation.

• constant

A logical value, TRUE or FALSE, indicating whether the user chose to include a vector

of constants in the model.

4.2. Minnesota Prior

BVARM(mydata,coefprior=NULL,p=4,constant=TRUE,

irf.periods=20,keep=10000,burnin=1000,

VType=1,decay="H",HP1=0.5,HP2=0.5,HP3=1,HP4=2)

• mydata

A matrix or data frame containing the data series used for estimation; this should be of

size T ×m.

• coefprior

A numeric vector of length m, matrix of size (m · p + 1c) × m, or a value of ‘NULL’,

that contains the prior mean-value of each coefficient. Providing a numeric vector of

length m will set a zero prior on all coefficients except the own first-lags, which are set

according to the elements in ‘coefprior’. Setting this input to ‘NULL’ will give a random-

walk-in-levels prior.

• p

The number of lags to include of each variable, where p ∈ #++. The default value is 4.

• constant

A logical statement on whether to include a constant vector (intercept) in the model.

The default is ‘TRUE’, and the alternative is ‘FALSE’.

• irf.periods

An integer value for the horizon of the impulse response calculations, which must be

greater than zero. The default value is 20.

• keep

The number of Gibbs sampling replications to keep from the sampling run.
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• burnin

The sample burn-in length for the Gibbs sampler.

• VType

Whether to use a variance type of Koop and Korobilis (2010) (‘VType=1’) or Canova

(2007) (‘VType=2’). The default is 1.

• decay

Whether to use harmonic or geometric decay for the VType=2 case.

• HP1, HP2, HP3, HP4

These correspond to H1, H2, H3, and H4, respectively, from section 2.3. Recall that the

prior covariance matrix of β , Ξβ , is given by

Ξβi, j
(ℓ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H1/ℓ
2

H2 ·σ2
i /
:
ℓ2 ·σ2

j

;

H3 ·σ2
i

in the case of VType=1, and

Ξβi, j
(ℓ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H1/d(ℓ)

H1 ·H2 ·σ2
j /
)
d(ℓ) ·σ2

i

*

H1 ·H3

in the case of VType=2, where

d(ℓ) =

⎧
⎨

⎩

ℓH4

H−ℓ+1
4

is the decay function.

The function returns an object of class ‘BVARM’, which contains:

• Beta

A matrix of size (m · p+1c)×m containing the posterior mean of the coefficient matrix
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(β).

• BDraws

An array of size (m · p+ 1c)×m× keep which contains the post burn-in draws of β .

• BetaVPr

An matrix of size (m · p+1c) ·m× (m · p+1c) ·m containing the prior covariance matrix

of vec(β).

• Sigma

A matrix of size m×m containing the fixed residual covariance matrix (Σ).

• IRFs

A four-dimensional object of size irf.periods × m × keep × m containing the impulse

response function calculations; the first m refers to responses to the last m shock.

• data

The data used for estimation.

• constant

A logical value, TRUE or FALSE, indicating whether the user chose to include a vector

of constants in the model.

4.3. Steady State Prior

BVARS(mydata,psiprior=NULL,coefprior=NULL,p=4,

irf.periods=20,keep=10000,burnin=1000,

XiPsi=1,HP1=0.5,HP4=2,gamma=NULL)

• mydata

A matrix or data frame containing the data series used for estimation; this should be of

size T ×m.

• psiprior

A numeric vector of length m that contains the prior mean of each series found in ‘my-

data’. The user MUST specify this prior, or the function will return an error.
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• coefprior

A numeric vector of length m, matrix of size (m·p)×m, or a value of ‘NULL’, that contains

the prior mean-value of each coefficient. Providing a numeric vector of length m will

set a zero prior on all coefficients except the own first-lags, which are set according to

the elements in ‘coefprior’. Setting this input to ‘NULL’ will give a random-walk-in-levels

prior.

• p

The number of lags to include of each variable, where p ∈ #++. The default value is 4.

• irf.periods

An integer value for the horizon of the impulse response calculations;, which must be

greater than zero. The default value is 20.

• keep

The number of Gibbs sampling replications to keep from the sampling run.

• burnin

The sample burn-in length for the Gibbs sampler.

• XiPsi

A numeric vector of length 1 or matrix of size m × m that defines the prior location

matrix of Ψ.

• HP1

H1 from section 3.

• HP4

H4 from section 3.

• gamma

A numeric vector of length 1 corresponding to the prior degrees of freedom of the error

covariance matrix. The minimum value is m+ 1, and this is the default value.

The function returns an object of class ‘BVARS’, which contains:

• Beta
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A matrix of size (m · p)×m containing the posterior mean of the coefficient matrix (β).

• BDraws

An array of size (m · p)×m× keep which contains the post burn-in draws of β .

• Psi

A matrix of size 1×m containing the posterior mean estimate of the unconditional mean

matrix (Ψ).

• PDraws

An array of size 1×m× keep which contains the post burn-in draws of Ψ.

• Sigma

A matrix of size m×m containing the posterior mean estimate of the residual covariance

matrix (Σ).

• SDraws

An array of size m×m× keep which contains the post burn-in draws of Σ.

• IRFs

A four-dimensional object of size irf.periods × m × keep × m containing the impulse

response function calculations; the first m refers to responses to the last m shock.

• data

The data used for estimation.



26

5. Additional Functions

5.1. Classical VAR

CVAR(mydata,p=4,constant=TRUE,irf.periods=20,boot=10000)

• mydata

A matrix or data frame containing the data series used for estimation; this should be of

size T ×m.

• p

The number of lags to include of each variable, where p ∈ #++. The default value is 4.

• constant

A logical statement on whether to include a constant vector (intercept) in the model.

The default is ‘TRUE’, and the alternative is ‘FALSE’.

• irf.periods

An integer value for the horizon of the impulse response calculations, which must be

greater than zero. The default value is 20.

• boot

The number of replications to run for the bootstrapped IRFs. The default is 10,000.

For the VAR model,

Y = Zβ + ϵ

the algorithm to obtain bootstrapped samples in BMR is as follows. First, obtain the OLS/MLE

estimates of the coefficients, &β , and the estimated disturbance terms &ϵ = y−Z &β . Then, sample

with replacement from &ϵ for a user-specified (H) number of times (for example, 10,000 times,

the default value of ‘boot’ above), and build H new series of Y by the following method. For

the purpose of illustration, let p = 2 and let there be a constant.

1. Let h ∈ [1, H], t ∈ [1, T ], Z = [ιT Yt−1 Yt−2 · · · Yt−p], and fix Y0, Y−1, . . . , Y−p+1. Using

&β , calculate

Y
(h)
1 = &Φ+ Y0

&β1 + Y−1
&β2 + · · ·+ Y−p+1

&βp + &ϵ
(h)
1
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2. Then, using Y
(h)

1 ,

Y
(h)

2 = &Φ+ Y
(h)
1
&β1 + Y0

&β2 + · · ·+ Y−p+2
&βp + &ϵ

(h)
2

3. Continuing in this fashion:

Y
(h)

3 = &Φ+ Y
(h)
2
&β1 + Y

(h)
1
&β2 + · · ·+ Y−p+3

&βp + &ϵ
(h)
3

... =
...

...
...

...

Y
(h)
T = &Φ+ Y

(h)
T−1

&β1 + Y
(h)
T−2

&β2 + · · ·+ YT−p
&βp + &ϵ

(h)
T

4. Then, with the new Y (h) series, estimate &β (h) and &Σ(h) and store them.

5. Go back to part 1 and do it all again for a new h = h+ 1.

6. After repeating the process above H times, and storing H number of β and Σ matrices,

estimate the IRFs.

The function returns an object of class ‘CVAR’, which contains:

• Beta

A matrix of size (m · p + 1c)×m containing the OLS estimate of the coefficient matrix

(β).

• BDraws

An array of size (m · p+ 1c)×m× keep which contains the bootstrapped β draws.

• Sigma

A matrix of size m×m containing the OLS estimates of the residual covariance matrix

(Σ).

• SDraws

An array of size m×m× keep which contains bootstrapped Σ draws.

• IRFs

A four-dimensional object of size irf.periods × m × boot × m containing the impulse

response function calculations. The first m refers to the responses to the last m shock.
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• data

The data used for estimation.

• constant

A logical value, TRUE or FALSE, indicating whether the user chose to include a vector

of constants in the model.

5.2. GACF and GPACF

While the autocorrelation and partial autocorrelation functions (‘acf’ and ‘pacf’) in the base

package of R ‘work’, this author dislikes the graphs they produce, especially the rather un-

necessary zero-lag on the ACF. BMR includes two functions to produce ACFs and PACFs with

GGPLOT2, and modifies the confidence intervals to instead use Bartlett’s formula.

gacf(y,lags=10,ci=.95,plot=T,barcolor="purple",

names=FALSE,save=FALSE,height=12,width=12)

gpacf(y,lags=10,ci=.95,plot=T,barcolor="darkred",

names=FALSE,save=FALSE,height=12,width=12)

• y

A matrix or data frame of size T ×m containing the relevant series.

• lags

The number of lags to plot.

• ci

A numeric value between 0 and 1 specifying the confidence interval to use; the default

value is 0.95.

• barcolor

The color of the bars.

• names

Whether to plot the names of the series.

• save

Whether to save the plots. The default is ‘FALSE’.
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• height

If save = TRUE, use this to set the height of the plot.

• width

If save = TRUE, use this to set the width of the plot.

5.3. Time-Series Plot

gtsplot(X,dates=NULL,rowdates=FALSE,dates.format="%Y-%m-%d",

save=FALSE,height=13,width=11)

• X

A matrix or data frame of size T ×m containing the relevant time-series data, where m

is the number of series.

• dates

A T × 1 date or character vector containing the relevant date stamps for the data.

• rowdates

A TRUE or FALSE statement indicating whether the row names of the X matrix contain

the date stamps for the data.

• dates.format

If ‘dates’ is not set to NULL, then indicate what format the dates are in, such as Year-

Month-Day.

• save

Whether to save the plot(s).

• height

The height of the saved plot(s).

• width

The width of the saved plot(s).
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5.4. Stationarity

BMR extends a Bayesian hand of friendship to the Bayesian-Classical agnostic by including a

basic function to run Augmented Dickey-Fuller (ADF) and KPSS tests.

stationarity(y,KPSSp=4,ADFp=8,print=TRUE)

• y

A matrix or data frame containing the series to be used in testing, and should be of size

T ×m.

• KPSSp

The number of lags to include for the test of Kwiatkowski et al. (1992), the ‘KPSS test’,

based on a model

yt = δt + ξt + ϵY,t,

ξt = ξt−1 + ϵξ,t

or

yt = δt +

t∑

s=0

ϵξ,s + ϵY,t

Let &ϵ be the estimated residuals from regressing y on a constant and time trend; the test

statistic is

K =
1

T 2&σ2
ϵ

&ϵ⊤&ϵ,

&σ2
ϵ =

1

T

G
T∑

t=1

&ϵt + 2

p∑

j=1

5
1−

j

1+ p

6
&ϵ⊤j+1:T &ϵ1:T− j

H

The test has a null hypothesis of &σ2
ϵξ
= 0, stationarity. The function will return test

statistics for both δ ̸= 0 and δ = 0, that is, with a time trend and without a time trend.

The critical values for the KPSS test are from (Kwiatkowski et al., 1992, Table 1).

• ADFp

The maximum number of (first-differenced) lags to include in the Augmented Dickey-

Fuller (ADF) tests, p ∈ #++. The default value is 8, and the optimal number of lags
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is based on minimising the Bayesian information criterion. Three different functional

forms are estimated for the ADF tests; in the order that they’re returned: with drift and

a time trend

∆yt = δ0 +δ1 t + β yt−1 +

p∑

i=1

αi∆yt−i + ϵt ,

with drift, but without a time trend,

∆yt = δ0 + β yt−1 +

p∑

i=1

αi∆yt−i + ϵt ,

and, finally, without drift or a time trend,

∆yt = β yt−1 +

p∑

i=1

αi∆yt−i + ϵt ,

where ∆ is the first-difference operator. The ADF test is based on a null-hypothesis that

β = 0 and alternative hypothesis β < 0. See any good time-series textbook for further

information. The critical values given by BMR are those found in (Hamilton, 1994,

Appendix 5).

• print

A logical statement on whether the test results should be printed in the output screen.

the default is ‘TRUE’.
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6. BVAR Examples

This section illustrates the use the BVAR functions in BMR. First, we estimate a VAR(2) model

with Minnesota prior, then a VAR(4) model with normal-inverse-Wishart prior, and conclude

with a steady-state example.

6.1. Monte Carlo Study

For the purpose of illustration, the following two variable VAR(2) model was used to generate

100 artificial data points,

Y=

I

Y1,t Y2,t

J
, Φ=

I

7 3

J

β =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0.5 0.2

0.28 0.7

−0.39 −0.1

0.1 0.05

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, Σ =

⎡

⎢⎢
⎣

1 0

0 1

⎤

⎥⎥
⎦

With this data, we estimate a BVAR with Minnesota prior using the ‘BVARM’ function. As

input to the function, we include the data (labelled: ‘bvarMCdata’), set the prior on the first

own-lag coefficients to 0.5 for both variables, and everything else to zero; set the number of

lags to 2; include a vector of constants in the model; set the impulse response horizon to 20;

set the number of runs of the Gibbs sampler to 15000, 5000 of which being sample burn-in;

set the variance type (as described in section 3) to ‘1’; and set the hyper-parameters H1, H2,

and H3 to values of 0.5, 0.5, and 10, respectively.

data(BMRMCData)

testbvarm <- BVARM(bvarMCdata,c(0.5,0.5),p=2,constant=TRUE,irf.periods=20,

keep=10000,burnin=5000,VType=1,

HP1=0.5,HP2=0.5,HP3=10)

Starting Gibbs C++, Tue Jan 20 10:33:17 2015.

C++ reps finished, Tue Jan 20 10:33:17 2015. Now generating IRFs.
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We can check the mean coefficient estimate by accessing $Beta:

testbvarm$Beta

Var1 Var2

Constant 6.3523726 2.90617697

Eq 1, lag 1 0.5585694 0.30112058

Eq 2, lag 1 0.2656987 0.57107739

Eq 1, lag 2 -0.3699877 -0.06192194

Eq 2, lag 2 0.1750157 0.05618627

and, for those whose prefer to visualise the parameter densities, we can plot the posterior

distributions of each coefficient with

plot(testbvarm,type=1,save=T)

the results of which are shown in figures 1, 2, and 3.
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Figure 1: Posterior Distributions of Constant Terms.



34

0

200

400

600

0.2 0.4 0.6 0.8

L1
.1

Var1

0

200

400

600

0.0 0.2 0.4 0.6

Var2

0

200

400

600

800

-0.25 0.00 0.25 0.50 0.75

L1
.2

0

200

400

600

800

0.25 0.50 0.75 1.00

Figure 2: Posterior Distributions of First Lags.
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Figure 3: Posterior Distributions of Second Lags.

Finally, we can plot the IRFs, using the median percentile as the the central tendency, along

with the 5th and 95th percentile bands, using

> IRF(testbvarm,percentiles=c(0.05,0.5,0.95),save=T)

This will save ‘IRFs.eps’ to your working directory, and the result is illustrated below.
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Figure 4: IRFs.
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6.2. Monetary Policy VAR

Now to a more ‘real’ example. Perhaps the most common use of VAR-type models in macroe-

conomics is that of the monetary policy VAR, a nice example of which is Stock and Watson

(2001). There, the authors estimate a three-variable VAR(4) model using quarterly inflation,

unemployment and the federal funds rate. I will use the same data source as in their paper,

but extend the dataset to the present day; this dataset comes packaged with BMR, and the

user can the appropriate sample period for estimation, based on their own preferred lag to

allow for major data revisions.

The data run from the second quarter of 1954 to the last quarter of 2011, and are con-

structed as follows. The quarterly inflation rate is based on the chain-weighted price index of

GDP, and annualised inflation is defined as πt = 400 ln(Pt/Pt−1), where Pt is the price index

at time t. Quarterly values of the unemployment and federal funds rates are based on simple

averages of the monthly values for that quarter. The full dataset is illustrated in figure 6.

To begin, we examine the properties of each series with the ‘stationarity’ function:

data(BMRVARData); stationarity(USMacroData[,2:4],4,8)

KPSS Tests: 4 lags

INFLATION UNRATE FEDFUNDS 1 Pct 2.5 Pct 5 Pct 10 Pct

Time Trend: 0.6288789 0.2577763 0.8038222 0.216 0.176 0.146 0.119

No Trend: 0.8332977 0.5007845 0.8471684 0.739 0.574 0.463 0.347

Augmented Dickey-Fuller Tests:

INFLATION UNRATE FEDFUNDS 1 Pct 2.5 Pct 5 Pct 10 Pct

Time Trend: -3.054973 -3.8956878 -2.600558 -3.99 -3.69 -3.43 -3.13

Constant: -2.878536 -3.7868331 -2.508190 -3.46 -3.14 -2.88 -2.57

Neither: -1.473235 -0.6515485 -1.366868 -2.58 -2.23 -1.95 -1.62

Number of Diff Lags for ADF Tests:

Trend Model Drift Model None

INFLATION 1 1 1

UNRATE 1 1 1

FEDFUNDS 3 3 3
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To this end, we can also use the ‘gacf’ and ‘gpacf’ functions as follows:

> gacf(USMacroData[,2:4],lags=12,ci=0.95,plot=T,barcolor="purple",

names=T,save=T,height=6,width=12)

> gpacf(USMacroData[,2:4],lags=12,ci=0.95,plot=T,barcolor="darkred",

names=F,save=T,height=6,width=12)
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Figure 5: ACF and PACFs.
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We now estimate a BVAR with normal-inverse-Wishart prior using the ‘BVARW’ function.

As it’s a small model, we will not need more than 1 CPU core, so ‘cores’ is set to 1. First, we set

the prior on the first own-lag coefficients to be 0.9, 0.95, and 0.95 for inflation, unemployment

and the federal funds rate, respectively; the number of lags to 4; include a constant vector by

setting constant=T; set the IRF horizon to 20 quarters; set the number of Gibbs sampling

replications to 15000, 5000 being burn-in; set the variance of each prior coefficient to 4, with

Ξβ = 4; and for the residual covariance matrix Σ, we set the location matrix ΞΣ to be the

identity matrix (by setting ΞΣ = 1) with 4 degrees of freedom, γ= 4.

testbvarw <- BVARW(USMacroData[,2:4],cores=1,c(0.9,0.95,0.95),

p=4,constant=T,irf.periods=20,

keep=10000,burnin=5000,

XiBeta=4,XiSigma=1,gamma=NULL)

Starting Gibbs C++, Tue Jan 20 10:42:46 2015.

C++ reps finished, Tue Jan 20 10:43:08 2015. Now generating IRFs.

As before, the mean of each coefficient is found by accessing $Beta

> testbvarw$Beta

INFLATION UNRATE FEDFUNDS

Constant 0.70225539 0.157218843 0.15365707

Eq 1, lag 1 0.52975134 0.024468380 0.07054064

Eq 2, lag 1 -0.72468233 1.590139740 -0.96468634

Eq 3, lag 1 0.14581331 -0.010235817 1.08208554

Eq 1, lag 2 0.18893757 -0.009580225 0.15781691

Eq 2, lag 2 0.82796252 -0.607117584 1.13306691

Eq 3, lag 2 -0.10223745 0.061954813 -0.43528377

Eq 1, lag 3 0.06878538 0.008277082 -0.06316018

Eq 2, lag 3 -0.07583659 -0.039813286 -0.38637307

Eq 3, lag 3 0.06795957 -0.047048908 0.37002400

Eq 1, lag 4 0.16834972 -0.018506048 -0.04772803

Eq 2, lag 4 -0.11408413 0.015970999 0.19661854

Eq 3, lag 4 -0.11635178 0.009430811 -0.09468271
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Plot the IRFs, with 5th and 95th percentiles, by using the ‘IRF’ function.

> IRF(testbvarw,percentiles=c(0.05,0.5,0.95),save=T)
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Figure 7: IRFs.
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We can plot the posterior distribution of each coefficient, along with the elements of the

residual covariance matrix, by using a plot function, where the input is

> plot(testbvarw, save=T, height=13, width=13)

The coefficient plots are given in figures 8, 9, 10, and 11, and the distribution of the elements

of Σ is given in figure 12.

Finally, with the estimated model, we can project forward in time with the ‘forecast’ func-

tion. Reestimate the model using data up to the last quarter of 2005,

> USMacroData <- USMacroData[1:203,2:4]

> testbvarw <- BVARW(USMacroData,1,c(0.9,0.95,0.95),p=4,constant=T,

irf.periods=20,keep=10000,burnin=5000,

XiBeta=4,XiSigma=1,gamma=4)

Starting Gibbs C++, Tue Jun 17 15:59:11 2014.

C++ reps finished, Tue Jun 17 15:59:26 2014. Now generating IRFs.

In addition to parameter uncertainty, the ‘shocks=T’ option incorporates uncertainty about

future shocks when calculating the percentile bands. ‘backdata=10’ includes the 10 previous

‘real’ data points in the plot, and the dashed line marks where our forecast begins.

> forecast(testbvarw,periods=10,shocks=T,plot=T,

percentiles=c(.05,.50,.95),backdata=10,save=T)

and this is shown in figure 13.
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Figure 8: Posterior Distributions of Constants and First Lags.
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Figure 9: Posterior Distributions of Second Lags.
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6.3. Steady State Example

Using the Monte Carlo model from section 6.1, let us briefly illustrate the use of the ‘BVARS’

function. While it is possible to combine our priors of the constant and coefficient matrices to

form a prior on the mean, Φ1×m

:
"m −

∑2
i=1 βi

;−1
= Ψ1×m, we can instead use the steady-state

prior of Villani (2009).

Begin by setting a prior of 0.5 on both first own lag coefficients, and zero on all others,

which we’ll call ‘mycfp’. Then set a prior of 18 and 19 on the mean of each series, which we’ll

call ‘mypsi’. Then, with a prior variance of 3 on each of the mean values, and hyper parameter

values of H1 = 0.5 and H4 = 2, with m+ 1 prior degrees of freedom on the error covariance

matrix (recall that setting γ =NULL will give the default value of m+ 1), we call the ‘BVARS’

function:

mycfp <- c(0.5,0.5)

mypsi <- c(18,19)

testbvars <- BVARS(bvarMCdata,mypsi,mycfp,p=2,irf.periods=20,

keep=20000,burnin=5000,

XiPsi=3,HP1=0.5,HP4=2,gamma=NULL)

We can then check the mean value of Ψ by typing

testbvars$Psi

Var1 Var2

Psi 18.49575 19.66013

and the mean values for β

testbvars$Beta

Var1 Var2

Eq 1, lag 1 0.5326724 0.28927310

Eq 2, lag 1 0.2345287 0.56842585

Eq 1, lag 2 -0.3978970 -0.07739211

Eq 2, lag 2 0.1433033 0.04712463

We can also plot the distribution of Ψ and IRFs, which are qualitatively similar to before.

plot(testbvars,save=T)

IRF(testbvars,save=T)
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7. Time-Varying Parameters

A less restrictive (though more complicated) approach to Bayesian VAR modelling allows the

parameters of the coefficient matrix β (and, in some cases, the parameters of the residual

covariance matrix) to vary over time. One macroeconometric motivation for doing so would

be that the structure of the economy we’re trying to model, and thus the relationships between

our variables, may change over time, including key economic and political institutions that

form and implement economic policy such as a central bank.

In the context of monetary policy VARs, since 1971 there have been five different Chair-

men of the Federal Reserve System, leading to an obvious question of how the mechanism

by which monetary policy interacts with the ‘real’ economy, and the so-called hawkishness

of each Chairman, have changed over time, leading to different responses of the economy to

monetary policy ‘shocks.’ Stated another way, have the parameters of the monetary policy

reaction function drifted over time? This is a question we can address with BVAR-TVP models.

The model is comprised of two series, the first describing the dynamics of our observable

series in a familiar VAR-type fashion, with the second defining the evolution of the parameter

vector over time, which is assumed to be an unobserved random walk. We denote this by

Yt = Ztβt + ϵY,t (29)

βt = βt−1 + ϵβ ,t (30)

where ϵY,t ∼ 2 (0,Σ) and ϵβ ,t ∼ 2 (0,Q), and, for a given t, matrices: Ym×1, Zm×(1+m·p)·m,

β(1+m·p)·m×1. The joint posterior kernel is

p(β1:T ,Q,Σ|Z , Y )∝ p(Y |Z ,β1:T ,Q,Σ)p(β0,Q,Σ)

where the prior densities for Q andΣ are standard, though note that we are now placing a prior

on the initial value of β . The prior densities are assumed to be independent, p(β0,Q,Σ) =

p(β0)p(Σ)p(Q), and are given by

p(β0) =2 (β̄ ,Ξβ ) (31)

p(Σ) = 34 (ΞΣ,γΣ) (32)

p(Q) = 34 (ΞQ,γQ) (33)
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BMR provides two options for specifying p(β0). The first is a user-specified prior exactly

the same as in the normal-inverse-Wishart model. The other option is to use a subset of Y ,

Y1:τ, as a training sample to initialise estimation of βτ+1:T . In the latter case, β̄ becomes the

OLS estimate of β ,

&β =

K
τ∑

t=1

Z⊤t Zt

L−1K τ∑

t=1

Z⊤t Yt

L

,

then Ξβ serves to scale the variance of the OLS estimate,

V
) &β
*
=

1

τ− (1+m · p)

G
τ∑

t=1

Z⊤t

K
τ∑

s=1

ϵY,sϵ
⊤
Y,s

L−1

Zt

H−1

,

and the location matrix of Q becomes ΞQ · τ times the variance of the OLS estimate. Thus,

when τ > 0, the three prior densities become:

p(β0) =2
) &β ,Ξβ · V (&β)

*
(34)

p(Σ) = 34 (ΞΣ,γΣ) (35)

p(Q) = 34
)
ΞQ ·τ · V (&β),γQ

*
(36)

The standard factorisation of the posterior density kernel still applies, so we can implement

a Gibbs-style sampler. The conditional posterior distributions of Σ and Q are

p(Σ|β1:T ,Q, Z , y) = 34

K

ΞΣ +

T∑

t=1

(yt − Ztβt)(yt − Ztβt)
⊤, T + γΣ

L

(37)

p(Q|β0:T ,Σ, Z , y) = 34

K

ΞQ +

T∑

t=1

(∆βt)(∆βt)
⊤, T + γQ

L

(38)

where ∆ is the first-difference operator. The conditional posterior distribution of the coeffi-

cient matrix β1:T , p(β1:T |Σ,Q,& T ), is a little more complicated, however.

Let & = & T = {&t}Tt=1 be the set of all observations, where a superscript (& t) denotes

all information up to and including time t, whereas a subscript implies a specific observation

at time t. We can factorise the joint conditional posterior density of β1:T to

p(β1:T |Σ,Q,& T ) = p(βT |Σ,Q,& T )

T−1∏

t=1

p(βt |βt+1,Σ,Q,& t) (39)
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where

p(βT |Σ,Q,& T ) =2 (βT , PT ) (40)

p(βt |βt+1,Σ,Q,& t) =2 (βt|t+1, Pt|t+1) (41)

are the conditional predictive densities, with

βt|t−1 = $(βt |& t−1,Σ,Q)

Pt|t−1 = V (βt |& t−1,Σ,Q)

(See, for example, Carter and Kohn (1994) for a technical discussion, and Cogley and Sargent

(2005) and Primiceri (2005) for applications and very detailed appendices.)

For each sampling iteration, we evaluate p(β1:T |Σ,Q,& T ) by applying a Kalman filter from

t = 0 to T , then a backwards recursion to obtain a smoothed estimate. (See the section on

DSGE estimation for an overview of the steps involved in the Kalman filter, equations (67)

through (73).) Following Koop and Korobilis (2010), BMR utilises the Durbin and Koopman

(2002) simulation smoother to do this. The process is divided into three sections. We begin

with a Kalman filter recursion to find &β1:T .

Given βt+1|t = βt|t and Pt+1|t = Pt|t + Q, and some initial values, β0 and P0, find the

residual, its covariance matrix, and Kalman gain matrix, given by

εt+1 = &t+1 − Zt+1βt+1|t

Σε,t+1 = Zt+1Pt+1|t Z
⊤
t+1 +Σ

Kt+1 = Pt+1|t Z
⊤
t+1Σ

−1
ε,t+1

respectively. Update the predicted βt+1 and Pt+1 series with t + 1 information,

βt+1|t+1 = βt+1|t + Kt+1εt+1

Pt+1|t+1 = Pt+1|t − Kt+1Zt+1Pt+1|t
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Then, using the filtered series, obtain smoothed estimates of the disturbances

&εY,t = ΣΣ
−1
ε,tεt −ΣK⊤t rt

&εβ ,t = Qrt

where rt is given by

rt−1 = ZtΣ
−1
ε,tεt + rt − Z⊤t K⊤t rt

such that rT = 0. A smoothed estimate of βt+1 is then given by iterating

&βt = &βt−1 +Qrt

forwards ∀t.

The simulation smoother requires three series of β to give a final estimate. Save &β from

an initial Kalman filter and smoothing run. Then sample new disturbance series, ϵY,t and

ϵβ ,t , using the fact that both are normally distributed with covariance matrices Σ and Q,

respectively, and denote these new series with a plus (‘+’). Using ϵ
(+)
Y,t and ϵ

(+)
β ,t

, generate Y (+)

and β (+) by the methods above, and store β (+). With Y (+), find &β (+) by the same filtering and

smoothing run. The hth β draw is then given by

β (h) = &β − (&β (+) − β (+))

However, as noted in (Durbin and Koopman, 2002, p. 607), we can simplify this process by

generating the series Y (∗) = Y −Y (+), which requires only one set of smoothed estimates of β ,

&β (∗), and this leads to a substantial improvement in computationally efficiency for estimating

the BVAR-TVP model. Therefore, for the hth β draw, BMR constructs

β (h) = &β (∗) + β (+) (42)

and proceeding to draw Q(h) and Σ(h) is standard.
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7.1. BVARTVP Function

BVARTVP(mydata,timelab=NULL,coefprior=NULL,tau=NULL,p=4,

irf.periods=20,irf.points=NULL,

keep=10000,burnin=5000,

XiBeta=4,XiQ=0.01,gammaQ=NULL,

XiSigma=1,gammaS=NULL)

• mydata

A matrix or data frame containing the data series used for estimation; this should be of

size T ×m.

• timelab

This is a numeric vector of length T that provides labels for the observations. This is

useful for selecting which IRFs to compute.

• coefprior

A numeric vector of length m, matrix of size (m·p+1)×m, or a value ‘NULL’, that contains

the prior mean-value of each coefficient. Providing a numeric vector of length m will

set a zero prior on all coefficients except the own first-lags, which are set according to

the elements in ‘coefprior’. Setting this input to ‘NULL’ will give a random-walk-in-levels

prior.

Note that, when τ is set to ‘NULL’, this input becomes the initial draw for the sampling

algorithm, and starting with an explosive draw might be a bad idea.

• tau

τ is the length of the training-sample prior. If this is set other than ‘NULL’ it will replace

‘coefprior’ above with the coefficients from a pre-sampling estimation run. Selecting this

option also affects the ‘XiBeta’ choice below.

• p

The number of lags to include of each variable, where p ∈ #++. The default value is 4.

• irf.periods

An integer value for the horizon of the impulse response calculations, which must be

great than zero. The default value is 20.



56

• irf.points

A numeric vector of length (0, T ]. If the user supplied a ‘timelab’ list above, then this

vector should contain points corresponding to that list. The default of ‘NULL’ will mean

that all IRFs, for T −τ, will be computed. The IRFs are stored in a 5 dimensional array

of size

irf.periods×m×m× length(irf.points)× keep

If the number of variables, replications, and/or observations is quite large, then cal-

culating all IRFs will take up a lot of memory. For example, with an IRF horizon of

20, 3 variables, 200 observations, training sample size of 50, and 50000 post-burn-in

replications, we have 1,350,000,000 elements to store.

• keep

The number of Gibbs sampling replications to keep from the sampling run.

• burnin

The sample burn-in length for the Gibbs sampler.

• XiBeta

A numeric vector of length 1 or matrix of size (m · p+1) ·m× (m · p+1) ·m that contains

the prior covariance of each coefficient for β0. If the user supplies a scalar value, then

Ξβ is "(m·p+1)m ·Ξβ . The structure of Ξβ corresponds to vec(β).

Note that if τ ̸= NULL, ‘XiBeta’ should be a numeric vector of length 1 that scales the

OLS estimate the covariance matrix of &β .

• XiQ

A numeric vector of length 1 or matrix of size (m · p+1) ·m× (m · p+1) ·m that contains

the location matrix of the inverse-Wishart prior on Q. If the user provides a scalar value,

then ΞQ is "(m·p+1)m ·ΞQ.

• gammaQ

A numeric vector of length 1 corresponding to the prior degrees of freedom of the Q

matrix. The minimum value is (m · p + 1)m + 1, and this is the default value, unless

τ ̸= NULL, in which case γS = τ.
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• XiSigma

A numeric vector of length 1 or matrix of size m×m that contains the location matrix of

the inverse-Wishart prior on Σ. If the user provides a scalar value, then ΞΣ is "(m·p+1)m ·

ΞΣ.

• gammaS

A numeric vector of length 1 corresponding to the prior degrees of freedom of the error

covariance matrix. The minimum value is m+ 1, and this is the default value.

The function returns an object of class ‘BVARTVP’, which contains:

• Beta

A matrix of size (m · p+1) ·m× (T −τ) containing the posterior mean of the coefficient

matrix, β , in vectorised form, for (τ+ 1) : T .

• BDraws

An array of size (m · p+ 1)×m× keep× (T −τ) which contains the post burn-in draws

of β .

• Q

A matrix of size (m · p+ 1) ·m× (m · p+ 1) ·m containing the mean posterior estimates

of the covariance matrix of ϵβ (Q).

• QDraws

An array of size (m · p + 1) ·m× (m · p + 1) ·m× keep which contains the post burn-in

draws of Q.

• Sigma

A matrix of size m×m containing the mean posterior estimates of the residual covariance

matrix (Σ).

• SDraws

An array of size m×m× keep which contains the post burn-in draws of Σ.

• IRFs

Let ℓ= number of ‘irf.points’ the user selected. ‘IRFs’ is then a five-dimensional object of



58

size irf.periods×m×m×ℓ×keep containing the impulse response function calculations;

the first m refers to the responses to the last m shock.

• data

The data used for estimation.

• irf.points

The points in the sample where the user elected to produce IRFs.

• tau

The length of the training sample.
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7.2. BVARTVP Example

Continuing with our updated Stock and Watson (2001) dataset, we will estimate a BVAR-

TVP model. Let’s pick 1979 as the first year to plot IRFs for, coinciding with Paul Volcker’s

appointment as Chairman of the Fed, then pick a year every 9 years going forward (that is,

1988, 1997, and 2006).

> irf.points<-c(1979,1988,1997,2006)

> yearlab<-seq(1955.00,2010.75,0.25)

> USMacroData<-USMacroData[3:226,2:4]

For estimation, we will use a training sample to initialise posterior sampling, using the first

80 quarters of our data to do so. As in the normal-inverse-Wishart case, select 4 lags, and 20

quarters as the IRF horizon. Run the sampler for 70,000 draws, 40,000 of which is sample

burn-in. Finally, the parameters of the prior densities are: Ξβ = 4, ΞQ = 0.005, and ΞΣ = 1,

with γQ = 81 and γΣ = 4.

> bvartvptest <- BVARTVP(USMacroData,timelab=yearlab,

coefprior=NULL,tau=80,p=4,

irf.periods=20,irf.points=irf.points,

keep=30000,burnin=40000,

XiBeta=4,XiQ=0.005,gammaQ=NULL,

XiSigma=1,gammaS=NULL)

Finished Prior

Starting Gibbs C++, Tue Jun 17 17:28:34 2014.

C++ reps finished, Tue Jun 17 17:33:49 2014. Now generating IRFs.

Post-estimation, we can plot the posterior distribution of βτ:T using

> plot(bvartvptest,save=T)

The four IRFs, with a median-based comparison of each, are given by the familiar IRF function,

> IRF(bvartvptest,save=T)

These are illustrated below.
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Figure 15: Posterior Distributions of Constants (Top) and First Lags Over Time.
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Figure 16: Posterior Distributions of Second Lags Over Time.
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Figure 17: Posterior Distributions of Third Lags Over Time.
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Figure 18: Posterior Distributions of Fourth Lags Over Time.
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Figure 19: IRFs at 1979.
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Figure 20: IRFs at 1988.
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Figure 21: IRFs at 1997.
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Figure 22: IRFs at 2006.
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Figure 23: Comparison of Median IRFs.
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8. DSGE

DSGE models are summarized by the first-order conditions of dynamic optimization problems

faced by forward-looking agents who exhibit rational expectations (i.e., agents know the over-

all structure of the economy, use all publicly available information efficiently, and do not make

systematic errors when forming their expectations about the future). BMR contains numerous

methods to solve, simulate, and estimate such models.

The DSGE-related literature has grown enormously since Bayesian methods were first ap-

plied to estimate DSGE model parameters, a topic neatly summarized by An and Schorfheide

(2007). An early example of this, Smets and Wouters (2002) is a medium-scale estimated

DSGE model, built for forecasting and counter-factual policy analysis. In subsequent work,

Smets and Wouters (2007), the authors provide an estimated DSGE model of the U.S. econ-

omy, a model noted for its strong forecasting performance when benchmarked against a

Bayesian VAR, which is often considered to possess the best all-round forecasting properties

in the class of linear multivariate models.

The forecasting performance of DSGE models is a topic of many other papers. Christoffel

et al. (2010), using a model described in Christoffel et al. (2008), provide a broad forecasting

comparison to a DSGE model, using simple univariate models, classical VARs, and small and

large BVARs. In addition to these, Edge et al. (2010) compare the forecasts of a DSGE model

against the Federal Reserve Board’s ‘Greenbook’ projections.

Bayesian methods are not the only possible approach to estimating DSGE models, how-

ever. Christiano et al. (2005), using the archetype New-Keynesian model, chose a minimum

distance estimator to match the impulse response functions (IRFs) of a DSGE model to the

IRFs produced by a monetary policy VAR, an approach similar in spirit to Rotemberg and

Woodford (1997). Another alternative is given by Ireland (2004), who estimates a simple

New-Keynesian model using pure maximum likelihood.

A relatively recent innovation is that of the DSGE-VAR by Del-Negro and Schorfheide

(2004). The idea is to use the implied moments of a DSGE model as the prior to a BVAR,

a neat example of which is found in Lubik and Schorfheide (2007). Using a simpler version

of a model presented in Galí and Monacelli (2005), Lees et al. (2011) use the DSGE-VAR

model to forecast five key macroeconomic variables of the New Zealand economy, with the

DSGE-VAR (and the DSGE model itself) outperforming Bayesian and classical VARs forecasts.
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However, Kolasa et al. (2009) find that the DSGE-VAR generally underperforms relative to a

DSGE model, but still performs well against a BVAR.

In reduced-form, DSGE models are essentially vector autoregression models of order one,

but with very tight cross-equation restrictions. BMR solves DSGE models using either Uhlig

(1999)’s method of undetermined coefficients or Chris Sims’ gensys algorithm. Other methods

include the complex generalised Schur decomposition of Klein (2000). Anderson (2008) sur-

veys six different solution methods for a first-order approximation, providing a computational

comparison of each; Aruoba et al. (2006) compliments this by covering both perturbation-

and projection-based solution methods.

DSGE models, being inherently non-linear objects, often require some simplifications be-

fore solving them with a computer. One popular approach is to log-linearize the equilibrium

conditions of a model around stationary steady-state values using a first-order Taylor approx-

imation. Consider a general model made up of four types of variables: x+, a lead variable; x ,

a present-state variable; x− a lag variable; and ϵ, an exogenous white noise process. We can

write the non-linear model in expectational form

$ f (x+,x,x−,ϵ) = 0 (43)

and the rational expectations solution is given by ‘policy functions’ of the form

x= ℓ(x−,ϵ). (44)

Plugging (44) into (43) yields the functional equation

$ f
)
ℓ(ℓ(x−,ϵ),ϵ+),ℓ(x−,ϵ),x−,ϵ

*
= 0

Let x̄ denote a steady-state value; a first-order approximation of the policy functions gives:

&ℓ(x−,ϵ) = x̄+
∂ ℓ

∂ x−
· (x− − x̄) +

∂ ℓ

∂ ϵ
· (ϵ) (45)

Numerically, our goal is to find the matrices that form the partial derivatives in (45).
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8.1. Solution Methods

This section describes the two solution methods available in BMR. First, we describe Uhlig’s

method of undetermined coefficients in detail, then briefly mention Chris Sims’ gensys solver.

8.1.1. Uhlig’s Method

Uhlig (1999)’s method of undetermined coefficients can be used in two different ways. The

first is referred to as the ‘brute-force’ method, which doesn’t distinguish between control and

so-called ‘jump’ variables, while the second method, known as the ‘sensitive’ approach, sepa-

rates expectational and predetermined equations (those without any expectation operators).

With some models, we may not have any natural candidates for control variables, particularly

with the simple New-Keynesian model, which we will see later in an example.

Let ζ1,t denote an m× 1 vector of control variables, ζ2,t denote an n× 1 vector of jump

variables, and zt denote a k × 1 vector of exogenous processes. With the sensitive approach,

we begin with the system

0= Aζ1,t + Bζ1,t−1 + Cζ2,t + Dzt (46)

0= $t

+
Fζ1,t+1 + Gζ1,t +Hζ1,t−1 + Jζ2,t+1 + Kζ2,t + Lzt+1 +Mzt

,
(47)

zt = Nzt−1 + ϵt (48)

and Uhlig’s solution method produces the policy functions

ζ1,t = Pζ1,t−1 +Qzt (49)

ζ2,t = Rζ1,t−1 + Szt (50)

zt = Nzt−1 + ϵt

The matrix C is of size l × n, where Uhlig allows for l ≥ n, however BMR requires that l = n,

which avoids the need to calculate the null matrix of C from a singular value decomposition. To

achieve this, simply set the number of control variables ζ1 equal to the number of expectational

equations (assuming, of course, that one has the same number of equations as ‘unknowns’).

Even if pseudo control variables are included, they should have zero elements in the eventual

solution matrix (P).

The brute-force approach doesn’t distinguish between ζ1,t and ζ2,t , instead let ζt =
'
ζ1,t ζ2,t

(⊤
.
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Uhlig’s method then takes the system

0= $t {Fζt+1 + Gζt +Hζt−1 + Lzt+1 +Mzt} (51)

zt = Nzt−1 + ϵt (52)

and produces the solution

ζt = Pζt−1 +Qzt (53)

zt = Nzt−1 + ϵt (54)

The solution method works as follows. Using our assumed solution for the sensitive ap-

proach, replace ζ1,t with Pζ1,t−1 +Qzt in the deterministic block to give

0= A(Pζ1,t−1 +Qzt) + Bζ1,t−1 + C(Rζ1,t−1 + Szt) + Dzt

= (AP + CR+ B)ζ1,t−1 + (AQ+ CS + D)zt

and, in the expectational block,

0= ((FQ+ JS + L)N + (F P + JR+ G)Q+ KS +M)zt

+ ((F P + JR+ G)P + KR+H)ζ1,t−1

For these conditions to hold, we must have

0= AP + CR+ B

0= (F P + JR+ G)P + KR+H

From the first condition, R= −C−1(AP + B), which we can use on the last equation

0= (F P + J(−C−1(AP + B)) + G)P + K(−C−1(AP + B)) +H

= F PP − JC−1APP − JC−1BP + GP − KC−1AP − KC−1B +H

= (F − JC−1A)PP − (JC−1B − G + KC−1A)P − KC−1B +H

The values of P must satisfy this equation.
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Define three matrices:

Ψ :=

I

F − JC−1A

J

Γ :=

I

JC−1B − G + KC−1A

J

Θ :=

I

KC−1B −H

J

(For the brute-force method, set Ψ = F , Γ = −G, and Θ = −H.) Written differently, P should

satisfy the matrix ‘quadratic’ equation

ΨP2 − Γ P −Θ = 0

Stack (Ψ, Γ ,Θ) as follows

Ξ =

⎡

⎢⎢
⎣
Γ Θ

"m 0m×m

⎤

⎥⎥
⎦

∆ =

⎡

⎢⎢
⎣
Ψ 0m×m

0m×m "m

⎤

⎥⎥
⎦

With Ξ and ∆, we solve the generalised eigenvalue problem,

Ξv=∆vλ, (55)

where v are the eigenvectors and λ is a diagonal matrix with the eigenvalues on the main

diagonal, sorted in ascending order. Fully written, the problem is

⎡

⎢⎢
⎣
Γ Θ

"m 0m×m

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

v11 v12

v21 v22

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣
Ψ 0m×m

0m×m "m

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

v11 v12

v21 v22

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣
λ11 0m×m

0m×m λ22

⎤

⎥⎥
⎦ (56)

R doesn’t natively provide the same user-friendly approach to solving a generalised eigen-

value problem as that found in other software (such as Matlab). Of course, if ∆−1 exists,
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then we could solve the standard eigenvalue problem of Av= vλ, where A=∆−1
Ξ, using the

‘eigen’ function. Most linear algebra libraries will solve the problem using decompositions of

∆ and Ξ first; for example, if ∆ is a Hermitian, positive-definite matrix, one could use the

Cholesky decomposition of ∆ = LL⊤, where L is lower-triangular, L−1
Ξ
)
L⊤
*−1

L⊤v = L⊤vλ,

computationally simpler than inverting ∆ directly.

However, typically ∆−1 will not exist—and this is almost always true with large models.

Another approach would be to use a singular value decomposition of ∆ = UΣV ′, where U

and V are unitary matrices, UU ′ = V V ′ = "∗ (the prime ′ denotes the conjugate transpose),

and, for some tolerance ε> 0, set Σ−1
i,i = 0 if Σi,i < ε, and denoting the adjusted matrix as 9Σ,

we have ∆−1 ≈ V 9Σ−1U⊤, otherwise known as a pseudo-inverse of ∆.

Instead, the generalised eigenvalue problem can be solved by means of a generalised Schur

decomposition, commonly referred to as the ‘QZ’ decomposition, a method used by Klein

(2000) and in the current version of Dynare. For A, B ∈ %d×e, Ax = Bxλ, we perform a QZ

decomposition of the matrix pencil (A, B)

⎧
⎨

⎩

< = Q′AZ

= = Q′BZ

where QQ′ = Z Z ′ = "∗ are unitary. The generalised eigenvalues are then given by λi =

<ii/=ii. The QZ algorithm in the Armadillo linear algebra library is used to find the generalized

eigenvalues and eigenvectors that are needed for Uhlig’s method.

Going back to our problem, we can multiply out (56) to get

⎡

⎢⎢
⎣
Γv11 +Θv21 Γv12 +Θv22

v11 v12

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣
Ψv11λ11 Ψv12λ22

v21λ11 v22λ22

⎤

⎥⎥
⎦ (57)

Focus on the stable eigenvalues, λ11, and we have a system of two equations

Γv11 +Θv21 = Ψv11λ11

v11 = v21λ11
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Substitute for v11 into the first to give

Γv21λ11 +Θv21 = Ψv21λ11λ11

Post multiply everything by v−1
21

Γv21λ11v−1
21 +Θ = Ψv21λ11λ11v−1

21

Recall our original problem was

ΨP2 − Γ P −Θ = 0

which looks a lot like

Ψv21λ11λ11v−1
21 − Γv21λ11v−1

21 −Θ = 0

by noticing that
)
v21λ11v−1

21

* )
v21λ11v−1

21

*
= v21λ11λ11v−1

21 . Then,

P = v21λ11v−1
21 (58)

solves the matrix quadratic equation.

With the P matrix, we can easily solve for Q and S with

⎡

⎢⎢
⎣

vec(Q)

vec(S)

⎤

⎥⎥
⎦ = −

⎡

⎢⎢
⎣

"k ⊗ A "k ⊗ C

N⊤ ⊗ F + "k ⊗ (F P + JR+ G) N⊤ ⊗ J + "k ⊗ K

⎤

⎥⎥
⎦

−1⎡

⎢⎢
⎣

vec(D)

vec(LN +M)

⎤

⎥⎥
⎦ (59)

and, finally,

R= −C−1(AP + B) (60)

and we have our 4 required matrices. The brute-force method would mean that both R and S

are empty, and vec(Q) = −[N⊤ ⊗ F + "k ⊗ (F P + G)]−1vec(LN +M).

Regardless of whether we use the brute-force approach or the ‘sensitive’ approach, we

need to stack the matrices containing the coefficients—which are non-linear functions of the

‘deep’ parameter values of the DSGE model—to form a simpler representation for estimation

and simulation. With the solution, we can build a state-space structure,

ξt =>ξt−1 +?ϵt (61)



76

where ξt = [ζt zt]
⊤, as follows:

> :=

⎡

⎢⎢⎢⎢⎢⎢
⎣

P 0m×n QN

R 0n×n SN

0k×m 0k×n N

⎤

⎥⎥⎥⎥⎥⎥
⎦

(m+n+k)×(m+n+k)

? :=

⎡

⎢⎢⎢⎢⎢⎢
⎣

Q

S

"k

⎤

⎥⎥⎥⎥⎥⎥
⎦

(m+n+k)×k

With this structure, we can easily produce impulse response functions (IRFs) and other de-

scriptive features of the model dynamics.

8.1.2. gensys

Chris Sims’ ‘gensys’ solver is based on the system

Γ0(θ)ξt = C(θ) + Γ1(θ)ξt−1 +Ψ(θ)εt +Π(θ)ηt (62)

and produces a solution

ξt = 9C(θ) + F(θ)ξt−1 + G(θ)εt (63)

As this solution method is rather well-known, we omit the details here.
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8.2. Estimation

To estimate the parameter values of a DSGE model, we need a method to evaluate the like-

lihood function p(& T |θ , Mi). The problem we face is that, while we can observe some of

the variables in the model (such as output), we cannot directly observe others (such as tech-

nology), or we assume that these series are unobservable due to the dubious nature of their

empirical proxies.

A solution to this problem is to use a state space approach and build the likelihood via a

filter; see Arulampalam et al. (2002) for a general discussion of linear and non-linear filtering

problems, and Fernández-Villaverde (2010) for a discussion with a particular focus on DSGE

models. As in the BVARTVP section, for notational convenience, a superscript (& t) denotes

all information up to and including time t, whereas a subscript implies a specific observation

at time t.

The state space setup involves two equations which connect the observable and unobserv-

able series of our model. The first, which we call the measurement equation, maps the state

ξt plus some random noise ϵ& to our observable series &t ,

&t = f (ξt ,ϵ& ,t |θ) (64)

and this relationship defines a conditional density p(&t |ξt ,θ). The second equation, which we

call the state transition equation, maps previous-period values of the state plus some random

noise, ϵξ, to the present state,

ξt = g(ξt−1,ϵξ,t |θ) (65)

and (65) implies a conditional density p(ξt |ξt−1,θ). Note that these densities are conditional

on some values for the ‘deep’ parameters of the DSGE model (θ), as the coefficient matrices

in ξ are functions of θ .

The likelihood of a DSGE model, p(& T |θ) = p(&1|θ)
∏T

t=2 p(&t |& t−1,θ), can be written

as

p(& T |θ) = p(&1|θ)
T∏

t=2

∫

!m+n+k

p(&t |ξt ,& t−1,θ)p(ξt |& t−1,θ)dξt

= p(&1|θ)
T∏

t=2

∫

!m+n+k

p(&t |ξt ,θ)p(ξt |& t−1,θ)dξt (66)
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where p(&1|θ) =
∫

p(&1|ξ1,θ)p(ξ1)dξ1, and p(ξ1) is the initial distribution of the state.

With p(ξ1)we build a sequence of densities p(ξt |& t−1,θ) ∀t ∈ [1, T ] in two steps: prediction

and correction (or ‘updating’).

First, given t − 1 information, we predict the position (distribution) of the state at time t

using

p(ξt |& t−1,θ) =

∫

!m+n+k

p(ξt |ξt−1,& t−1,θ)p(ξt−1|& t−1,θ)dξt−1

=

∫

!m+n+k

p(ξt |ξt−1,θ)p(ξt−1|& t−1,θ)dξt−1

and this prediction introduces a new conditional density, p(ξt |& t ,θ), to our problem, i.e., an

update of the position of the state with new t information. We update our t − 1 estimate of

the state given new t information using Bayes’ rule,

p(ξt |& t ,θ) =
p(&t |ξt ,θ)p(ξt |& t−1,θ)

∫
p(&t |ξt ,θ)p(ξt |& t−1,θ)dξt

Thus, we have four predictive densities in the filtering problem, knowledge of which would

allow us to integrate out the state in the likelihood equation. The first two densities relate to

our observable series, p(&t |ξt ,θ) and p(&t |& t−1,θ), the former being defined by the mea-

surement equation. The other two densities relate to the state, p(ξt |& t−1,θ) and p(ξt |& t ,θ).

8.2.1. The Kalman Filter

If the system, given by (64) and (65), is linear, and the innovations (ϵ& ,t and ϵξ,t) Gaussian,

then the likelihood of our DSGE model, p(& T |θ , Mi), can be evaluated through a Kalman filter,

which assumes that the predictive densities p(ξt |& t−1,θ), p(ξt |& t ,θ), and p(&t |& t−1,θ)

are all conditionally Gaussian in form. Thus, all we will need to track are the first and second

moments of the problem, as these form sufficient statistics for the Gaussian distribution.

The measurement equation of &(T× j) is now

&t = @ +A ⊤ξt + ϵ& ,t

where the matrix A(n+m+k)× j relates the state to our observable series, @ is a 1× j vector of
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intercept terms, and ϵ& ,t ∼2 (0,B). The state transition equation is

ξt =>ξt−1 +?ϵξ,t

where > is the state transition matrix. Note that the state transition equation is simply the

solution to our DSGE model (61), where we assume that ϵξ,t ∼2 (0,C).

The Kalman filter sequentially builds a likelihood function from forecasts of &t+1 given t

information, and error variances of this forecast. This is done in three short steps, repeated

∀t ∈ [1, T ]. First, predict the state at time t+1 given information available at time t; second,

update the estimated position of the state with new &t+1 information; and, finally, calculate

the likelihood at t + 1 based on forecast errors of &t+1 and the covariance matrix of these

forecasts.

To begin, initialise the state ξ at time t = 0, ξ0, and the covariance matrix of the state

variables, P0. We then predict the state at time t + 1 given information at time t with

ξt+1|t := $t[ξt+1] =>ξt|t , (67)

and calculate the covariance matrix of the state

Pt+1|t => Pt|t>⊤ +?C?⊤. (68)

With these predictions, we then bring in time t + 1 information and update our forecasts

of the state accordingly. We first get the prediction residual,

εt+1 = &t+1 −@ −A ⊤ξt+1|t , (69)

and the covariance matrix of the residual,

Σt+1 =A ⊤Pt+1|tA +B . (70)

Then we calculate the Kalman gain,

Kt+1 = Pt+1|tA Σ−1
t+1 (71)
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which we use to update our forecast of the state,

ξt+1|t+1 = ξt+1|t + Kt+1εt+1 (72)

and the covariance matrix

Pt+1|t+1 = Pt+1|t − Kt+1A ⊤Pt+1|t . (73)

This completes the updating of the state with t + 1 information. As we’ve assumed normality

of ϵ& ,t and ϵξ,t , the conditional likelihood function is proportional to that of a normal density

ln(,t+1)∝−
1

2

)
ln (|Σt+1|) + ε⊤t+1Σ

−1
t+1εt+1

*
(74)

We would then go back to equations (67) and (68), move the time indices forward by one,

and, using our ξt+1|t+1 and Pt+1|t+1 from equations (72) and (73), we estimate the state and

covariance of the state for t + 2. The process continues, using equations (67) through (73),

until time T , and the log likelihood function is the sum

ln(, T )∝−
1

2

T∑

t=1

+
ln (|Σt |) + ε⊤t Σ

−1
t εt

,

given initial values of the state and the covariance matrix of the state.

The initial values of the state (ξ0) are assumed to be zero, and the initial value of the

covariance matrix of the state is set to the steady-state covariance matrix of ξ, which we

denote by Ωss,

Ωss =>Ωss> +?C?⊤

the existence of which follows from the stationarity of the model. Ω is found via a doubling

algorithm.

8.2.2. Chandrasekhar Recursions

When estimating DSGE models with a lot of state variables, the term> Pt|t>⊤ in (68) involves

large-scale matrix multiplication. Recently, Herbst (2014) showed that, when the number of

states is much larger than the number of observables, there are substantial computation gains

from recasting the filtering problem in terms of the first difference of the state covariance
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matrix Pt+1|t ,

∆Pt+1|t := Pt+1|t − Pt|t−1

Using the decomposition ∆Pt+1|t =Wt MtW
⊤
t , where Wt is j × rank(∆Pt+1|t), we can reduce

the dimension of matrix multiplication by notating that rank(∆Pt+1|t) ≤ min{n + m + k, j}.

See Herbst (2014) for details.

Using the notation from the previous section, the recursions for Mt and Wt are

Wt = (> − KtΣ
−1
t A

⊤)Wt−1

Mt = Mt−1 +Mt−1W⊤t−1A Σ
−1
t−1A

⊤Wt−1Mt−1

The forecast residual covariance matrix and Kalman gain recursions then become:

Σt = Σt−1 +A ⊤Wt−1Mt−1W⊤t−1A

Kt = Kt−1 +>Wt−1Mt−1W⊤t−1A

8.3. Prior Distributions

This section describes the five prior distributions allowed in BMR; for further details on these

distributions, the reader is directed to Papoulis and Pillai (2002). The choice of prior dis-

tribution will depend on the assumed support of each parameter; for !, a Gaussian distri-

bution seems appropriate; for !+, Gamma or inverse-Gamma distributions; or with support

(a, b) ⊂ !, we may select a Beta or Uniform distribution.

The Normal (or Gaussian) distribution is described by two parameters, its mean and vari-

ance, denoted µ and σ2, respectively, with a probability density function (pdf) given by

p(θ) =
1

E
2πσ2

exp

5
−

1

2σ2
(θ −µ)2

6
(75)

which is symmetric around µ, and
E

2πσ2 serves as the normalizing constant (i.e., that the

area under p(θ) integrates to one). If θ is normally distributed, we denote this by θ ∼

2 (µ,σ2).

For θ ∈ !+, the Gamma distribution is described by the parameters α and β , α,β > 0,
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commonly referred to as the shape and scaling parameters, respectively, and the pdf is

p(θ) =
θα−1

Γ (α)βα
exp

5
−
θ

β

6
(76)

where Γ (α) is the usual Gamma function, defined as

Γ (α) =

∫ ∞

0

θα−1 exp(−θ)dθ

where, if α ∈ #+,

Γ (α) = (α− 1)Γ (α− 1) = (α− 1)!

We denote the Gamma distribution by ? (α,β). There is a simple connection between the

Gamma and inverse-Gamma distributions. If we define ϑ := 1/θ , then we can use the density

transformation theorem to show that

p(ϑ) = p(1/ϑ)

OOOO
dθ

dϑ

OOOO

=
ϑ1−α

Γ (α)βα
exp

5
−

1

ϑβ

6
ϑ−2

=
ϑ−α−1

Γ (α)βα
exp

5
−

1

ϑβ

6
(77)

Although, note that β in (77) is the reciprocal of β in the Gamma distribution; i.e., if θ ∼

? (α,β), then, for ϑ = 1/θ , ϑ ∼ 3? (α, 1/β).

If θ ∈ (a, b), the Beta pdf, with parameters α and β , α,β > 0, is given by

p(θ) =
1

B(α,β)
θα−1(1− θ)β−1 (78)

which is well-defined over the unit interval, where the beta function B(α,β) is defined as

B(α,β) =

∫ 1

0

θα−1(1− θ)β−1dθ .

The Uniform pdf with parameters a and b, b− a > 0, is given by

p(θ) =

⎧
⎨

⎩

1
b−a if θ ∈ [a, b]

0 otherwise.
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We denote the Uniform distribution by F (a, b).

To aid in the selection of prior distributions for the parameters of a DSGE model, the ‘prior’

function will plot any of the above pdfs and return the mean, mode, and variance (whenever

they’re well-defined for a given parameterization). A full list of the function inputs are given

in section 8.8. For example,

grid.newpage()

pushViewport(viewport(layout=grid.layout(3,2)))

prior("Normal",c(1,0.1),NR=1,NC=1)

prior("Normal",c(0.2,0.01),NR=1,NC=2)

prior("Gamma",c(2,2),NR=2,NC=1)

prior("Gamma",c(2,1/2),NR=2,NC=2)

prior("IGamma",c(3,2),NR=3,NC=1)

prior("IGamma",c(3,1),NR=3,NC=2)

is shown in figure 24, and

grid.newpage()

pushViewport(viewport(layout=grid.layout(2,2)))

prior("Beta",c(20,2),NR=1,NC=1)

prior("Beta",c(7,7),NR=1,NC=2)

prior("Uniform",c(0,1),NR=2,NC=1)

prior("Uniform",c(1,5),NR=2,NC=2)

is shown in figure 25.
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Figure 24: Prior Distributions: Normal, Gamma, and inverse-Gamma.
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Figure 25: Prior Distributions: Beta and Uniform.
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8.4. Posterior Sampling

In BMR, we sample from the posterior distribution of interest, p(θ |& , Mi), via a Random

Walk Metropolis MCMC algorithm. The algorithm begins by finding somewhere ‘high’ on

the posterior space, such as the mode of the posterior distribution, which can be found by

maximizing the natural log of the posterior kernel,

ln+ (θ |& , Mi) = ln, (θ |& , Mi) + ln p(θ |Mi) (79)

where our likelihood is evaluated with a Kalman filter. One computational feature to note is

that BMR, as in Warne (2012), will transform every deep parameter such that its support is

unbounded, instead of working with θ directly. This occurs for any parameters which are given

a Gamma, inverse-Gamma prior, or Beta prior. When this occurs, BMR will adjust the posterior

density above to account for a Jacobian term, which follows from the density transformation

theorem.

The sampling algorithm is as follows. First, draw θ0 from a starting distribution p0(θ);

this is the posterior mode from an optimization routine. Second, draw a proposal θ (∗) from a

jumping distribution,

2 (θ (h−1), c ·Σm) (80)

where Σm is the inverse of the Hessian computed at the posterior mode and c is a scaling

factor which is typically set by the researcher to achieve an acceptation rate of between 20-

40%. Third, compute the acceptation ratio,

ν =
+ (θ (∗)|& , Mi)

+ (θ (h−1)|& , Mi)
(81)

If our acceptance rate is too high, the algorithm will not visit the tails of the distribution often

enough; too low and we may not achieve convergence before sampling ends. Finally, we

accept or reject the proposal according to

θ (h) =

⎧
⎨

⎩

θ (∗) with probability min{ν, 1}

θ (h−1) else
(82)

This process is repeated for a given number of user-specified replications. The draws from the
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RWM algorithm will be serially correlated and so, to avoid the initial values from dominating

the shape of the posterior density before the chains converge, we discard an initial fraction of

draws as sample burn-in.

8.5. Marginal Likelihood

To compare different models over the same data, the marginal likelihood (4),

p(& |Mi) =

∫

Θ

p(& |θ , Mi)p(θ |Mi)dθ

is calculated with a Laplacian approximation. The Laplace approximation of the integral is

given by

p(& |Mi) ≈ p(& |θ , Mi)p(θ |Mi)(2π)
k/2|Σm|1/2 (83)

where k is the dimension of θ . The approximation (83) is evaluated at the posterior mode of

θ , and is returned in log form.

8.6. Summary

To summarise the process of estimation, we define two main steps and the sub-steps contained

therein.

1. Initialization and finding the posterior mode:

(i) The user provides:

i. j series of data in T × j format, ensuring that the number of observable series

does not exceed to the number of stochastic shocks in the model, j ≤ k, thus

avoiding stochastic singularity;

ii. write a function that maps the model’s parameters to the relevant matrices of

a suitable solution method. The function should also return a k × k matrix

called ‘shocks’ that comprises the covariance matrix of the shocks, a k × 1

vector of constant terms in the measurement equation called ‘ObsCons’, and

a j × j matrix called ‘MeasErrs’ that comprises the covariance matrix of the

measurement errors.

iii. provide initial values of the parameters to start the posterior mode optimiza-

tion routine;
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iv. select prior distributions for the estimated parameters, as well as the relevant

parameters of these distributions (mean, standard deviation, degrees of free-

dom, etc.), and any upper and/or lower bounds;

v. set the (m+ n+ k)× j matrix that maps the observable series to the reduced-

form DSGE model, i.e., the A matrix of the measurement equation,

&t = @ +A ⊤ξt + ϵ& ,t

vi. select an optimization algorithm to use when computing the posterior mode,

along with any upper- and lower-bounds for optimization;

vii. set the scaling parameter (c) of the inverse of the Hessian at the posterior

mode to adjust the acceptation rate;

viii. and, finally, set the number of replications to keep and any sample burn-in.

(ii) BMR will check if the model can be solved using the initial values provided. The

initial values will be transformed such that support of each parameter is in !.

(iii) The problem then passes to a numerical optimizer to locate the posterior mode.

i. The parameters are transformed back to their standard values, then, using the

function the user supplied, will be used to solve the DSGE model.

ii. With the solved model, we pass the state transition matrix to the Kalman filter

ξt =>ξt−1 + ϵξ,t

along with the user-supplied data andA matrix

&t = @ +A ⊤ξt + ϵ& ,t

The Kalman filter will then return the log-likelihood value ln (, (θ |& , Mi)).

iii. Finally, the log-value of the posterior kernel,

ln+ (θ |& , Mi) = ln, (θ |& , Mi) + ln p(θ |Mi),

is found by checking the values against the prior distributions p(θ |Mi) the

user supplied, and adjusting the posterior for the Jacobian, should that be
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necessary.

(iv) The optimization routine continues as above, (hopefully) yielding θ (m) and Σm,

the posterior mode and covariance matrix of θ at the mode, respectively.

2. With θ (m) and Σm, the Metropolis Markov Chain Monte Carlo routine begins. Set h = 1,

h ∈ [1, Hb +Hk], subscript b being the ‘burnin’ option and k being ‘keep’.

(i) Draw θ (∗) from 2 (θ (h−1), c ·Σm), where θ (0) = θ (m).

(ii) The parameters are transformed back to their standard values, then, using the

function the user supplied, be used to solve the DSGE model.

(iii) With the solved model, we pass the state transition matrix to the Kalman filter,

along with the user-supplied data andA matrix. The Kalman filter will then return

the likelihood value , (θ |& , Mi).

(iv) Finally, the log-value of the posterior kernel,

ln+ (θ |& , Mi) = ln, (θ |& , Mi) + ln p(θ |Mi)

is found by checking the values against the prior distributions p(θ |Mi) the user

supplied, and adjusting the posterior for the Jacobian, should that be necessary.

(v) Draw ν ∼F (0,1). If

ν<
+ (θ (∗)|& , Mi)

+ (θ (h−1)|& , Mi)

set θ (h) = θ (∗), otherwise set θ (h) = θ (h−1).

(vi) If h> Hb, store the values.

(vii) If h= Hb +Hk, stop, otherwise set h= h+ 1 and go back to (i).

And we’re done.
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8.7. DSGE Functions

8.7.1. Solve DSGE (gensys, uhlig, SDSGE)

gensys(Gamma0,Gamma1,C,Psi,Pi)

• Gamma0

Coefficients on present-time variables. This is matrix Γ0 in (62).

• Gamma1

Coefficients on lagged variables. This is matrix Γ1 in (62).

• C

Intercept terms. This is matrix C in (62).

• Psi

Coefficients on any exogenous shocks. This is matrix Ψ in (62).

• Pi

One-step-ahead expectational errors. This is matrix Π in (62).

The function returns an object of class ‘gensys’, which contains:

• G1

Autoregressive solution matrix. This is matrix F in (63).

• Cons

Intercept terms. This is matrix 9C in (63).

• impact

Coefficients on the exogenous shocks. This is matrix G in (63).

• eu

A 2×1 vector indicating existence and uniqueness (respectively) of the solution. A value

of 1 can be read as ‘yes’, while 0 is ‘no’

• Psi

User-specified shock matrix.
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• Pi

User-specified expectational errors matrix.

uhlig(A,B,C,D,F,G,H,J,K,L,M,N,whichEig=NULL)

• A,B,C,D

The ‘uhlig’ function requires the three blocks of matrices, with 12 matrices in total. The

A, B, C , and D matrices form the deterministic block.

• F,G,H,J,K,L,M

The F , G, and H matrices form the expectational block for the control variables. The J

and K matrices are for the ‘jump’ variables, and L and M are for the exogenous shocks.

• N

The N matrix defines the autoregressive structure of any exogenous shocks.

• whichEig

The function will return the eigenvalues and (right) eigenvectors used to construct the

solution matrices, with the eigenvalues sorted in order of smallest to largest (in absolute

value). By default, BMR will select the first (smallest) m eigenvalues (out of a total of

2m eigenvalues). However, if you prefer to select the eigenvalues yourself, then enter

a numeric vector of length m indicating which elements of the eigenvalue matrix you

wish to use.

The function returns an object of class ‘uhlig’, which contains:

• N

The user-specified N matrix, defining the autoregressive nature of any exogenous shocks.

• P

The P matrix from Uhlig’s solution.

• Q

The Q matrix from Uhlig’s solution.

• R

The R matrix from Uhlig’s solution.
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• S

The S matrix from Uhlig’s solution.

• EigenValues

The sorted eigenvalues that form the solution to the P matrix. If a situation of ±∞ in

the real part of an eigenvalue (with a corresponding NaN-valued imaginary part) arises,

the eigenvalue will be set to 1E+07 +0i.

• EigenVectors

The eigenvectors corresponding to the sorted eigenvalues.

8.7.2. Simulate DSGE (DSGESim)

DSGESim((obj,shocks.cov,sim.periods,burnin=NULL,seedval=1122,hpfiltered=FALSE,lambda=160

• obj

An object of class ‘SDSGE’, ‘gensys’, or ‘uhlig’. The user should first solve a model us-

ing one of the solver functions (‘SDSGE’, ‘gensys’, or ‘uhlig’), then pass the solution to

‘DSGESim’.

• shocks.cov

A matrix of size k × k that describes the covariance structure of the model shocks.

• sim.periods

The number of simulation periods the function should return.

• burnin

The length of sample burn-in. The default, ‘burnin = NULL’, will set burn-in to one-half

of the number given in ‘sim.periods’.

• seedval

Seed the random number generator.

• hpfiltered

Whether to pass the simulated series through a Hodrick-Prescott filter before retuning

it.
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• lambda

If ‘hpfiltered= TRUE’, then this is the value of the smoothing parameter in the H-P filter.

The function returns a matrix of size sim.periods× (m+ n+ k).

8.7.3. Estimate DSGE (EDSGE)

EDSGE(dsgedata,chains=1,cores=1,

ObserveMat,initialvals,partomats,

priorform,priorpars,parbounds,parnames=NULL,

optimMethod="Nelder-Mead",

optimLower=NULL,optimUpper=NULL,

optimControl=list(),

DSGEIRFs=TRUE,irf.periods=20,

scalepar=1,keep=50000,burnin=10000,

tables=TRUE)

• dsgedata

A matrix or data frame of size T × j containing the data series used for estimation.

• chains

A positive integer value indicating the number of MCMC chains to run.

• cores

A positive integer value indicating the number of CPU cores that should be used for

estimation. This number should be less than or equal to the number of chains. Do not

allocate more cores than your computer can safely handle!

• ObserveMat

The (m+n+ k)× j observable matrixA that maps the state variables to the observable

series in the measurement equation.

• initialvals

Initial values to begin the optimization routine.
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• partomats

This is perhaps the most important function input.

‘partomats’ should be a function that maps the deep parameters of the DSGE model to the

matrices of a solution method, and contain: a k × k matrix labelled ‘shocks’ containing

the variances of the structural shocks; a j × 1 matrix labelled ‘MeasCons’ containing

any constant terms in the measurement equation; and a j× j matrix labelled ‘MeasErrs’

containing the variances of the measurement errors..

• priorform

The prior distribution of each parameter.

• priorpars

The parameters of the relevant prior densities.

For example, if the user selects a Gaussian prior for a parameter, then the first entry will

be the mean and the second its variance.

• parbounds

The lower- and (where relevant) upper-bounds on the parameter values.

• parnames

A character vector containing labels for the parameters.

• optimMethod

The optimization algorithm used to find the posterior mode. The user may select: the

“Nelder-Mead” simplex method, which is the default; “BFGS”, a quasi-Newton method;

“CG” for a conjugate gradient method; “L-BFGS-B”, a limited-memory BFGS algorithm

with box constraints; or “SANN”, a simulated-annealing algorithm.

See ?optim for more details.

If more than one method is entered, e.g., c(Nelder-Mead, CG), optimization will pro-

ceed in a sequential manner, updating the initial values with the result of the previous

optimization routine.

• optimLower

If optimMethod="L-BFGS-B", this is the lower bound for optimization.
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• optimUpper

If optimMethod="L-BFGS-B", this is the upper bound for optimization.

• optimControl

A control list for optimization. See ?optim in R for more details.

• DSGEIRFs

Whether to calculate impulse response functions.

• irf.periods

If DSGEIRFs=TRUE, then use this option to set the IRF horizon.

• scalepar

The scaling parameter, c, for the MCMC run.

• keep

The number of replications to keep. If keep is set to zero, the function will end with a

normal approximation at the posterior mode.

• burnin

The number of sample burn-in points

• tables

Whether to print results of the posterior mode estimation and summary statistics of the

MCMC run.

The function returns an object of class ‘EDSGE’, which contains:

• Parameters

A matrix with ‘keep× chains’ number of rows that contains the estimated, post sample

burn-in parameter draws.

• parMode

Estimated posterior mode parameter values.

• ModeHessian

The Hessian computed at the posterior mode for the transformed parameters.
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• logMargLikelihood

The log marginal likelihood from a Laplacian approximation at the posterior mode.

• IRFs

The IRFs (if any), based on the posterior parameter draws.

• AcceptanceRate

The acceptance rate of the chain(s).

• RootRConvStats

Gelman’s
E

R-between-chain convergence statistics for each parameter. A value close 1

would signal convergence.

• ObserveMat

The user-suppliedA matrix from the Kalman filter recursion.

• data

The data used for estimation.

8.7.4. Prior Specification (prior)

prior(priorform,priorpars,parname=NULL,moments=TRUE,NR=NULL,NC=NULL)

• priorform

This should be a valid prior form for the EDSGE or DSGEVAR functions, such as “Gamma”

or “Beta”.

• priorpars

The relevant parameters of the distribution.

• parname

A title for the plot.

• moments

Whether to print the mean, mode, and variance of the distribution.

• NR

For use with multiple plots.
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• NC

For use with multiple plots.
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9. DSGE Examples

This section provides two detailed examples of how to use DSGE-related functions in BMR,

from simple simulation to estimation. The first example is a well-known real business cycle

(RBC) model, and the second is the basic New-Keynesian model. The final model is included

as an example of a ‘large’ model with many bells, and yet even more whistles.

9.1. RBC Model

We begin with a well-known RBC model; for those unfamiliar with RBC-type models, I rec-

ommend McCandless (2008) as a gentle introduction to dynamic macroeconomics. The social

planner wants to maximise lifetime utility of a representative agent,

max
{Ct+i ,Nt+i}

$t

3∞∑

i=0

β i

K
C

1−η
t+i

1−η
− aNt+i

L4

(84)

where β ∈ (0,1) is a discount factor, Ct is consumption at time t and Nt is labour supplied, and

we assume constant relative risk aversion (CRRA) function for consumption; i.e., u(C) = C1−η

1−η ,

where absolute and relative risk aversion are

R(C) = −
u′′(C)

u′(C)
= −
−η(1−η)C−η−1

(1−η)C−η
=
η

C

Rr(C) = −C
u′′(C)

u′(C)
= η

respectively, 1/η is the intertemporal elasticity of substitution for consumption between peri-

ods. As η→ 1, we get log utility.9

9To see this, let u(C) = C1−η−1
1−η , use l’Hôpital’s rule and evaluate the limit η→ 1,

lim
η→1

d
dηC1−η − 1

d
dη1−η

= lim
η→1

−C1−η · ln(C)
−1

= ln(C)

where, for the numerator, define f := C1−η, take the log of both sides, and use implicit differentiation:

1

f

d f

dη
=

d

dη
(1−η) ln(C)⇒

d f

dη
= f · (− ln(C)) = −C1−η · ln(C)
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This is subject to the constraints:

Yt = Ct + It

Yt = At K
α
t−1N1−α

t

Kt = It + (1−δ)Kt−1

where Yt is output, At is technology, Kt is the capital stock, It is investment, and δ is the

depreciation rate of capital. The constraints can be combined to yield

At K
α
t−1N1−α

t = Ct + Kt − (1−δ)Kt−1, (85)

and technology is assumed to follow an AR(1) process,

ln At = (1−ρ) ln A∗ +ρ lnAt−1 + εt , εt ∼2 (0,σ2
a) (86)

Set up the Lagrangian,

, = $t

P∞∑

i=0

β i

K
C

1−η
t+i

1−η
− aNt+i

LQ

+$t

P∞∑

i=0

β iλt+i

)
At+iK

α
t−1+iN

1−α
t+i − Ct+i − Kt+i + (1−δ)Kt−1+i

*
Q

The first-order conditions of the problem are:

,Ct
= C
−η
t −λt = 0

,Ct+1
= β$t

'
C
−η
t+1 −λt+1

(
= 0

,Kt
= −λt + β$t

R
λt+1

5
α

Yt+1

Kt

+ 1−δ
6S
= 0

,Nt
= −a+ (1−α)λt

Yt

Nt

= 0

,λt
= At K

α
t−1N1−α

t − Ct − Kt + (1−δ)Kt−1 = 0

where a subscript on , denotes a partial derivative with respect to that variable. Define

Rt+1 := α
Yt+1

Kt

+ 1−δ
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so ,Kt
becomes

−λt + β$t [λt+1Rt+1] = 0.

We know from ,Ct
and ,Ct+1

that C
−η
t = λt and C

−η
t+1 = λt+1, respectively, so

C
−η
t = β$t

'
C
−η
t+1Rt+1

(

which means that ,Nt
is re-written as

−a + (1−α)C−ηt

Yt

Nt

= 0

⇒
Yt

Nt

=
a

1−α
C
η
t

The full RBC model is given by the following 7 equations:

Yt = Ct + It (87)

Yt = At K
α
t−1N1−α

t (88)

Kt = It + (1−δ)Kt−1 (89)

Rt = α
Yt

Kt−1

+ 1−δ (90)

C
−η
t = β$t(C

−η
t+1Rt+1) (91)

Yt

Nt

=
a

1−α
C
η
t (92)

logAt = (1−ρ) logA∗ +ρ logAt−1 + εt (93)

To provide a form that we can use in BMR, we log-linearize the equilibrium conditions

by taking a Taylor series expansion around stationary steady-state values. For a continuously

differentiable function, f (x) ∈ C∞ (continuously differentiable to an infinite order), we can

approximate its form by ‘expanding’ around the centering value x0, which is given by the

series:

f (x) = f (x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)

2

+
f (3)(x0)

3!
(x − x0)

3 + . . .+
f (n−1)(x0)

(n− 1)!
(x − x0)

n−1 + Rn
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where

Rn =
f (n)(ξ)(x − x0)

n

n!
, x0 < ξ< x ,

is the remainder; see Hoy et al. (2001). For example, if we take the exponential function ex

(i.e., e being Euler’s number, e = limk→∞
)
1+ 1

k

*k ≈ 2.71828) we approximate around the

centering value x0 by

ex = ex0 +
ex0

1!
(x − x0)

1 +
ex0

2!
(x − x0)

2 +
ex0

3!
(x − x0)

3 +
ex0

4!
(x − x0)

4 +
ex0

5!
(x − x0)

5 + . . .

Setting x0 = 0 and using the first-order approximation we get

ex ≈ e0 +
e0

1!
(x − 0)1

or

ex ≈ 1+ x

as e0 = 1. Note that this approximation holds only for values of x very close to zero.

The Uhlig (1999) method of log-linearisation is quite simple. As as an example, let

Yt = X t

which we can re-write as

Yt = X t

X ∗

X ∗

or

Yt = X ∗
X t

X ∗

where X ∗ is the ‘steady-state value for X ’; this is a trivial transformation because X ∗

X ∗ = 1. We

can take the exponential of a natural log of
Xt

X ∗ without changing anything on the left-hand

side, since the logarithmic function (to the base of e) is the inverse of the exponential function.

So,

Yt = X ∗ exp

5
ln

5
X t

X ∗

66

holds by definition. Remember that ln
:

Xt

X ∗

;
= ln(X t)− ln(X ∗), so we set

xt := ln(X t)− ln(X ∗)
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as the deviation of X t from its steady-state value, X ∗. Therefore,

Yt = X ∗ exp(xt)

also holds, by definition. Taking a first-order Taylor series expansion of exp(xt) around the

centering value of zero, as above, yields,

exp(xt) ≈ 1+ xt

so

Yt ≈ X ∗(1+ xt).

We will now apply this method to the RBC model.

9.1.1. Log-Linearising the RBC Model

For our first equilibrium condition,

Yt = Ct + It

we implement the method described above to give

Y ∗(1+ yt) = C∗(1+ ct) + I∗(1+ it)

and note that

Y ∗ = C∗ + I∗

so expanding the equation out

Y ∗ + Y ∗ yt = C∗ + C∗ct + I∗ + I∗ it

means that we can cancel Y ∗ = C∗ + I∗. We’re then left with

Y ∗ yt = C∗ct + I∗it
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and writing yt in terms of everything else,

yt =
C∗ct + I∗it

Y ∗
(94)

yields the first log-linearized equation.

For our second equilibrium condition,

Yt = At K
α
t−1N1−α

t

Use the method to give

Y ∗ exp(yt) = A∗ exp(at) (K
∗)α exp(αkt−1) (N

∗)1−α exp((1−α)nt)

Again, note that

Y ∗ = A∗ (K∗)α (N ∗)1−α

so we can divide across by Y ∗ to cancel some terms,

exp(yt) = exp(at)exp(αkt−1)exp((1−α)nt)

The first-order approximation is then

(1+ yt) = (1+ at)(1+αkt−1)(1+ (1−α)nt)

If we ignore cross-products,

yt = at +αkt−1 + (1−α)nt (95)

which is the second log-linearized equation.

Our third equilibrium condition is

Kt = It + (1−δ)Kt−1

Re-writing

K∗(1+ kt) = I∗(1+ it) + (1−δ)K∗(1+ kt−1)
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or

K∗kt = I∗ it + (1−δ)K∗kt−1

⇒ kt =
I∗ it + (1−δ)K∗kt−1

K∗
(96)

The fourth equilibrium condition is

Rt = α
Yt

Kt−1

+ 1−δ,

Multiply both sides by Kt−1 to make this a little easier,

Rt Kt−1 = αYt + (1−δ)Kt−1

so

R∗K∗(1+ rt + kt−1) = αY ∗(1+ yt) + (1−δ)K∗(1+ kt−1)

canceling and dividing across

rt + kt−1 =
αY ∗ yt

R∗K∗
+
(1−δ)K∗kt−1

R∗K∗

or

rt =
αY ∗ yt

R∗K∗
+
(1−δ)K∗kt−1

R∗K∗
− kt−1

=
αY ∗ yt

R∗K∗
+

K∗kt−1 −δK∗kt−1 − R∗K∗kt−1

R∗K∗

⇒ rt =
αY ∗ yt

R∗K∗
+

K∗kt−1(1−δ− R∗)

R∗K∗

Now note that,

R∗K∗ = αY ∗ + (1−δ)K∗
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so

Y ∗ =
R∗K∗ − (1−δ)K∗

α

=
K∗(−1+δ− R∗)

α

⇒ Y ∗ =
−K∗(1−δ+ R∗)

α

Notice that this appears in the right hand side of

rt =
αY ∗ yt

R∗K∗
+

kt−1K∗(1−δ− R∗)

R∗K∗

which implies

rt =
αY ∗ yt

R∗K∗
+

kt−1(−Y ∗α)

R∗K∗

and if we re-write

rt =
αY ∗

R∗K∗
(yt − kt−1) . (97)

The fifth equation is

C
−η
t = β$t(C

−η
t+1Rt+1)

Begin as before

(C∗)−η (1−ηct) = β$t[(C
∗)−η (1− ηct+1) (R

∗) (1+ rt+1)]

Note that,

(C∗)−η = β$t[(C
∗)−η (R∗)]

where the expectation is trivial. So,

(1−ηct) = $t[(1−ηct+1)(1+ rt+1)]

ignoring cross-products,

−ηct = $t[−ηct+1 + rt+1]

so

ct = $t ct+1 −
1

η
$t rt+1 (98)
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where we divide both sides by −η, and note that the expectation of a sum is the sum of the

expectations.

Almost finished! The sixth equation is

Yt

Nt

=
a

1−α
C
η
t .

Re-write,

Yt =
a

1−α
C
η
t Nt

Follow the same procedure as before,

Y ∗(1+ yt) =
a

1− α
(C∗)η (1+ηct )N

∗(1+ nt)

Note that

Y ∗ =
a

1−α
(C∗)η N ∗

so dividing across we get,

(1+ yt) = (1+ηct )(1+ nt)

Expand this out and ignore cross-products,

yt = ηct + nt

which can be written as

nt = yt −ηct (99)

The final equation describing the exogenous process is simple.

logAt = (1−ρ) logA∗ +ρ logAt−1 + εt

logAt = logA∗ −ρ log A∗ +ρ logAt−1 + εt

(log At − logA∗) = ρ(logAt−1 − logA∗) + εt

which we can re-write as

at = ρat−1 + εt (100)
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Finally, if we combine these equations,

yt =
C∗ct + I∗it

Y ∗
(101)

yt = at +αkt−1 + (1−α)nt (102)

kt =
I∗ it + (1−δ)K∗kt−1

K∗
(103)

rt =
αY ∗

R∗K∗
(yt − kt−1) (104)

ct = $t ct+1 −
1

η
$rt+1 (105)

nt = yt −ηct (106)

at = ρat−1 + εt (107)

we have a new set of log-linearized equations as our system that describes the equilibrium of

the economy.

However, we still need to calculate R∗, C∗

Y ∗ ,
I∗

Y ∗ , and Y ∗

K∗ . In the fifth equilibrium condition

we have

C
−η
t = β$t(C

−η
t+1Rt+1)

or

1= β$t

55
Ct

Ct+1

6η
Rt+1

6

In the steady-state, Ct = Ct+1 = C∗, and Rt+1 = R∗,

1= β$t

55
C∗

C∗

6η
R∗
6

1= β$t (R
∗)

⇒ R∗ =
1

β
(108)

Using the fourth equation,

Rt = α
Yt

Kt−1

+ 1−δ
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we know from the previous steady-state that

R∗ =
1

β
= α

Y ∗

K∗
+ 1−δ

β−1 − (1−δ) = α
Y ∗

K∗

β−1 − (1−δ)
α

=
Y ∗

K∗

⇒
Y ∗

K∗
=
β−1 − 1+δ

α
(109)

Now recall the third equation

Kt = It + (1−δ)Kt−1

In the steady-state, Kt = Kt−1 = K∗, so

K∗ = I∗ + K∗ −δK∗

canceling

I∗ = δK∗

or
I∗

K∗
= δ (110)

To get C∗

Y ∗ , we use the steady-state of the first equilibrium condition

Y ∗ = C∗ + I∗

or
C∗

Y ∗
= 1−

I∗

Y ∗

We’ve already found that
I∗

K∗
= δ

and
Y ∗

K∗
=
β−1 − 1+δ

α
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Dividing the first by the second
I∗

K∗

Y ∗

K∗

=
I∗

Y ∗
=

δ
β−1−1+δ

α

which can be re-written as
I∗

Y ∗
=

αδ

β−1 − 1+δ

Therefore,
C∗

Y ∗
= 1−

αδ

β−1 − 1+δ
(111)

And we’re finished.
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9.1.2. Inputting the Model to BMR

Now that we have a system of log-linearized equations, we need to set the model up in the

form

0= Aξ1,t + Bξ1,t−1 + Cξ2,t + Dzt

0= $t

+
Fξ1,t+1 + Gξ1,t +Hξ1,t−1 + Jξ2,t+1 + Kξ2,t + Lzt+1 +Mzt

,

zt = Nzt−1 + ϵt

to find the solution

ξ1,t = Pξ1,t−1 +Qzt

ξ2,t = Rξ1,t−1 + Szt

zt = Nzt−1 + ϵt

using Uhlig’s method of undetermined coefficients. First, break up the equations into three

blocks. The first block relates to the pre-determined variables, Aξ1,t + Bξ1,t−1 + Cξ2,t + Dzt ,

0= yt −
C∗

Y ∗
ct −

I∗

Y ∗
it

0= yt − at −αkt−1 − (1−α)nt

0= kt −
I∗

K∗
it − (1−δ)kt−1

0= nt − yt +ηct

0= rt −
αY ∗

R∗K∗
yt +

αY ∗

R∗K∗
kt−1

The second block contains our expectational equations, of which we have only one:

0= ct −$t ct+1 +
1

η
$rt+1

and the third is our exogenous process

at = ρat−1 + εt
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In order, the vectors containing our variables are

ξ1,t = [kt]

ξ2,t = [ct yt nt rt it]
⊤

zt = [at]

The coefficient matrices are as follows. For the first block:

A= [0 0 1 0 0]⊤

B = [0 −α − (1−δ) 0 (α/R∗)(Y ∗/K∗)]⊤

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−C∗/Y ∗ 1 0 0 −I∗/Y ∗

0 1 −(1−α) 0 0

0 0 0 0 −I∗/K∗

η −1 1 0 0

0 −(α/R∗)(Y ∗/K∗) 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

D = [0 − 1 0 0 0]⊤

The second block:

F = G = H = L = M = [0]

J = [−1 0 0 1/η 0]

K = [1 0 0 0 0]

For the exogenous process:

N = [ρ]

Once we have defined these matrices, we use the ‘uhlig’ function in BMR:

dsgetest <- uhlig(A,B,C,D,F,G,H,J,K,L,M,N)
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This will return the four (previously) unknown matrices P, Q, R, and S. An a numerical

example, let’s use the following parameter values: β = 0.99, α = 0.33, δ = 0.015, η = 1,

ρ = 0.95, and σa = 1. The solution

ξ1,t = Pξ1,t−1 +Qzt

ξ2,t = Rξ1,t−1 + Szt

zt = Nzt−1 + ϵt

is then

P = [0.9519702]

Q = [0.1362265]

R= [0.50624359 − 0.02782790 − 0.53407149 − 0.02554152 − 2.20198548]⊤

S = [0.43745335 2.14214017 1.70468682 0.05323218 9.08176873]⊤

with N as before.

With this solution, we can build our state space structure,

ξt =>ξt−1 +?ϵt

as discussed in the previous section (BMR will do this for you), and, to produce IRFs, the

relevant BMR function is

IRF(dsgetest,shock=1,irf.periods=30,varnames=c("Capital","Consumption",

"Output","Labour","Interest","Investment","Technology"),save=TRUE)

the result of which is shown below, in figure 26
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Figure 26: RBC Model: Shock to Technology.
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9.1.3. Estimation

We now look to illustrate the use of DSGE estimation functions in BMR. First, we can simulate

data from the RBC model to use in estimation. The parameter values are the same as in the

previous section—α = 0.33, δ = 0.015, η = 1, ρ = 0.95, and σa = 1—but with β = 0.97,

and we will fix β at this value during estimation as it is not identified.

Use the ‘DSGESim’ function to generate data as follows:

dsgetestsim <- DSGESim(dsgetest,1122,1,200,200,hpfiltered=FALSE)

Using the solved model contained in ‘dsgetest’, this will generate 400 data points, 200 of which

are used for sample burn-in, and the final 200 are returned to the ‘dsgetestsim’ object. The

data are displayed in figure 27, where, for estimation, we use the output series.

Next we define the observable matrix,A from the measurement equation

ObserveMat <- rbind(0,0,1,0,0,0,0)

set the initial values of α, δ, η, ρ, and σa as

initialvals <- c(0.28,0.015,1,0.9,1)

set the parameter names

parnames <- c("Alpha","Delta","Eta","Rho","SigmaA")

give functional forms to the prior distributions; select the relevant parameters for the prior

distributions; and place upper- and lower-bounds where necessary.

priorform <- c("Normal","Normal","Normal","Beta","IGamma")

priorpars <- cbind(c( 0.30, 0.015, 1, 4, 2),

c(0.05^2, 0.002^2, 0.2^2, 1.5, 1))

parbounds <- cbind(c(NA, NA, NA, 0.5, 0),

c(NA, NA, NA, 0.999, NA))
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We then call the ‘EDSGE’ function using these inputs. To find the posterior mode, we will

use the Nelder-Mead simplex algorithm. For the MCMC run, set the number of chains and

CPU cores to 1, with scaling parameter of 0.75, keep 50,000 draws and discard 20,000 as

sample burn-in.

RBCest <- EDSGE(dsgedata,chains=1,cores=1,

ObserveMat,initialvals,partomats,

priorform,priorpars,parbounds,parnames,

optimMethod="Nelder-Mead",

optimLower=NULL,optimUpper=NULL,

DSGEIRFs=TRUE,irf.periods=30,

scalepar=0.75,keep=50000,burnin=20000)

Trying to solve the model with your initial values... Done.

Beginning optimization, Tue Jul 8 11:14:25 2014.

Using Optimization Method: Nelder-Mead.

Optimization over, Tue Jul 8 11:14:25 2014.

Optimizer Convergence Code: 0; successful completion.

Optimizer Iterations:

function gradient

412 NA

Log Marginal Likelihood: -432.1544.

Parameter Estimates and Standard Errors (SE) at the Posterior Mode:

Estimate SE

Alpha 0.31179806 0.046665668

Delta 0.01499326 0.002000901

Eta 0.94864026 0.204332224

Rho 0.94495738 0.022811016
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SigmaA 1.01446782 0.116342248

Beginning MCMC run, Tue Jul 8 11:14:25 2014.

MCMC run finished, Tue Jul 8 11:15:24 2014.

Acceptance Rate: 0.37422.

Parameter Estimates and Standard Errors:

Posterior.Mode SE.Mode Posterior.Mean SE.Posterior

Alpha 0.31179806 0.046665668 0.31005536 0.046716633

Delta 0.01499326 0.002000901 0.01499752 0.002000388

Eta 0.94864026 0.204332224 0.94019062 0.207895270

Rho 0.94495738 0.022811016 0.94793787 0.019871423

SigmaA 1.01446782 0.116342248 1.03093146 0.136488835

Computing IRFs now... Done.

With our estimated model, we can plot the parameter values using

plot(RBCest,save=TRUE)

shown in figure 28, and the impulse response functions with

IRF(RBCest,FALSE,varnames=c("Capital","Consumption","Output","Labour",

"Interest","Investment","Technology"),save=TRUE)

shown in figure 29.
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Figure 27: RBC Model: Simulated Data.
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9.2. The Basic New-Keynesian Model

This section details the well-known basic New-Keynesian model; as references see (Galí, 2008,

Ch. 3), (Lawless and Whelan, 2011, Appendix), and (Woodford, 2003, Ch. 3). The model

consists of three main endogenous processes: inflation, real output, and a nominal interest

rate, represented in the form of a Phillips curve (of sorts), a forward-looking IS equation, and

a monetary policy reaction function, respectively. The primary distinction with the RBC model

discussed previously, is the inclusion of nominal rigidities, in the form of staggered pricing by

firms, and monopolistic competition in the production sector. These rigidities imply the non-

neutrality of money in the short-run, and thus a role to the central bank in minimizing welfare

losses arising from business cycles.

9.2.1. Dixit-Stiglitz Aggregators

Dixit-Stiglitz aggregators are abound in the DSGE literature, so I will derive the demand func-

tions implied by this approach. In this framework, a firm’s production is a function of a com-

posite of goods, indexed over the continuum [0,1], represented by a Dixit-Stiglitz aggregator

Yt :=

K∫ 1

0

Yt(i)
ϑ−1
ϑ di

L ϑ
ϑ−1

, (112)

where ϑ > 1 is the elasticity of substitution between goods and i ∈ [0,1] serves to index

integration; ϑ also has an interpretation as a markup over marginal cost, which we will see

later in this section. The firm’s problem is to minimise cost

∫ 1

0

Pt(i)Yt(i)di := Et ,

subject to (112), where Pt is price and Et is total expenditure (at time t). (The problem

can equally be restated as profit maximization, rather than minimizing cost.) The standard

constrained optimization approach applies, so we can set up a Lagrangian

, =
∫ 1

0

Pt(i)Yt(i)di +λ

⎛

⎝Yt −

K∫ 1

0

Yt(i)
ϑ−1
ϑ di

L ϑ
ϑ−1

⎞

⎠ . (113)

The simplest way to derive the demand functions is to maximise (113) for any two arbitrary
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goods. Take the first-order condition (FOC) of (113) for, say, good j,

Pt( j)−λ
ϑ

ϑ− 1

K∫ 1

0

Yt(i)
ϑ−1
ϑ di

L ϑ
ϑ−1−1

ϑ− 1

ϑ
Yt( j)

ϑ−1
ϑ −1 = 0 (114)

Now, do the same for, say, good k,

Pt(k)−λ
ϑ

ϑ− 1

K∫ 1

0

Yt(i)
ϑ−1
ϑ di

L ϑ
ϑ−1−1

ϑ− 1

ϑ
Yt(k)

ϑ−1
ϑ −1 = 0 (115)

Divide (114) by (115),

λ ϑ
ϑ−1

:∫ 1

0
Yt(i)

ϑ−1
ϑ di

; ϑ
ϑ−1−1 ϑ−1

ϑ Yt( j)
ϑ−1
ϑ −1

λ ϑ
ϑ−1

:∫ 1

0
Yt(i)

ϑ−1
ϑ di

; ϑ
ϑ−1−1

ϑ−1
ϑ Yt(k)

ϑ−1
ϑ −1

=
Pt( j)

Pt(k)
(116)

Notice that we can cancel quite a lot from (116), so we’re left with

Yt( j)
ϑ−1
ϑ −1

Yt(k)
ϑ−1
ϑ −1

=
Pt( j)

Pt(k)
(117)

Now for some manipulation of (117):

Yt( j)
ϑ−1−ϑ
ϑ

Yt(k)
ϑ−1−ϑ
ϑ

=
Pt( j)

Pt(k)

Yt( j)
− 1
ϑ

Yt(k)
− 1
ϑ

=
Pt( j)

Pt(k)

Yt( j)

Yt(k)
=

5
Pt( j)

Pt(k)

6−ϑ

Yt( j) = Pt( j)
−ϑPt(k)

ϑYt(k)
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Multiply both sides by Pt( j) and integrate over good j,

Yt( j)Pt( j) = Pt( j)Pt( j)
−ϑPt(k)

ϑYt(k)
∫ 1

0

Yt( j)Pt( j)d j =

∫ 1

0

Pt( j)
1−ϑPt(k)

ϑYt(k)d j

∫ 1

0

Yt( j)Pt( j)d j = Pt(k)
ϑYt(k)

∫ 1

0

Pt( j)
1−ϑd j

where
∫ 1

0
Yt( j)Pt( j)d j = Et , by definition. Now define the price index by:

Pt :=

K∫ 1

0

Pt(i)
1−ϑdi

L 1
1−ϑ

(118)

which we can rewrite as

P1−ϑ
t =

K∫ 1

0

Pt(i)
1−ϑdi

L

.

Using this equation,

∫ 1

0

Yt( j)Pt( j)d j = Pt(k)
ϑYt(k)

∫ 1

0

Pt( j)
1−ϑd j

Et = Pt(k)
ϑYt(k)P

1−ϑ
t

⇒ Yt(k) =
Et

Pt(k)ϑP1−ϑ
t

Yt(k) =
1

Pt(k)ϑP−ϑt

Et

Pt

⇒ Yt(k) =

5
Pt(k)

Pt

6−ϑ Et

Pt

(119)
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If we substitute (119) into the definition Yt =
:∫ 1

0
Yt(k)

ϑ−1
ϑ dk

; ϑ
ϑ−1

, we get

Yt =

⎛

⎝
∫ 1

0

X5
Pt(k)

Pt

6−ϑ Et

Pt

Y ϑ−1
ϑ

dk

⎞

⎠

ϑ
ϑ−1

=
Et

Pt

⎛

⎝
∫ 1

0

X5
Pt(k)

Pt

6−ϑY ϑ−1
ϑ

dk

⎞

⎠

ϑ
ϑ−1

=
Et

Pt

K∫ 1

0

Pt(k)
−(ϑ−1)Pϑ−1

t dk

L ϑ
ϑ−1

=
Et

Pt

Pϑt

K∫ 1

0

Pt(k)
1−ϑdk

L ϑ
ϑ−1

Now recall that the price index is Pt =
:∫ 1

0
Pt(i)

1−ϑdi
; 1

1−ϑ
, so raising both sides by the expo-

nent −ϑ

P−ϑt =

K∫ 1

0

Pt(i)
1−ϑdi

L −ϑ
1−ϑ

=

K∫ 1

0

Pt(i)
1−ϑdi

L ϑ
ϑ−1

which we can use on

Yt =
Et

Pt

Pϑt

K∫ 1

0

Pt(k)
1−ϑdk

L ϑ
ϑ−1

to get

Yt =
Et

Pt

Pϑt P−ϑt

= Et P
−1+ϑ−ϑ
t = Et P

−1
t

⇒ Pt Yt = Et

i.e., the price index times the quantity index equals expenditure (surprise, surprise!). As

∫ 1

0

Pt(k)Yt(k)dk = Et ,
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we see that ∫ 1

0

Pt(k)Yt(k)dk = Pt Yt .

Using Yt = Et/Pt we can substitute into

Yt(k) =

5
Pt(k)

Pt

6−ϑ Et

Pt

to get the final equation

Yt(k) =

5
Pt(k)

Pt

6−ϑ
Yt (120)

which is the demand function for an arbitrary good k.

9.2.2. The Household

We begin with the maximization problem faced by the household, from which we will derive

a relationship between output and interest rates. The household wants to maximise

∞∑

k=0

β kU(Ct+k, Nt+k) :=

∞∑

k=0

β k
$t

⎧
⎨

⎩
C

1− 1
η

t+k

1− 1
η

−
N

1+φ
t+k

1+φ

⎫
⎬

⎭
(121)

where Ct =
:∫ 1

0
Ct(i)

ϑ−1
ϑ di

; ϑ
ϑ−1

is consumption and Nt is labour supplied (with a factor price

of Wt), subject to a sequence of intertemporal budget constraints

Pt Ct + Bt =Wt Nt + (1+ it−1)Bt−1 (122)

every period, where Bt is any bond holdings in period t and it is the nominal interest rate.

The first-order conditions with respect to Bt , Ct , Ct+1, and Nt of this problem are

$t {λt+1(1+ it)−λt}= 0

C
−1/η
t +λt Pt = 0

$tβ
/

C
−1/η
t+1 +λt+1Pt+1

0
= 0

−N
φ
t −λtWt = 0

where λt is the usual Lagrangian multiplier. If we combine the first-order conditions for Bt ,
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Ct , and Ct+1 we get

P−1
t C
−1/η
t = $t

7
β(1+ it)P

−1
t+1C

−1/η
t+1

8

Market clearing requires that Yt = Ct , and for notational simplicity define Rt = 1+ it ,

1= $t

P

βRt

5
Pt

Pt+1

65
Yt

Yt+1

6 1
η

Q

Log-linearising the above equation yields,

1= $t

P

β

5
P∗

P∗

65
Y ∗

Y ∗

6 1
η

exp(it + pt − pt+1 +
1

η
yt −

1

η
yt+1)

Q

where we note that ln(1+ it) ≈ it when it is small. A first-order approximation is

1= $t

R
βR∗(1+ it + pt − pt+1 +

1

η
yt −

1

η
yt+1)

S

Note that, in the steady-state R∗ = 1
β , so we can re-write as follows

1− 1= $t

5
it + pt − pt+1 +

1

η
yt −

1

η
yt+1

6

or

yt = $t yt+1 −ηit −ηpt +η$t pt+1

Define inflation as $tπt+1 := $t(pt+1 − pt),

yt = $t yt+1 −η(it −$tπt+1) (123)

Equation (123) is commonly referred to as a forward looking IS equation, where output today

depends negatively on the real interest rate.

9.2.3. Marginal Cost and Returns to Scale

Before proceeding to look at the problem faced by the firm, we will briefly explore the rela-

tionship between marginal cost and returns to scale. The reason why we’re doing this is to

avoid a lengthy detour later when we replace a firm-specific marginal cost with an average
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marginal cost for the economy. Define the production function of the economy to be

Yt := At N
1−α
t , (124)

where At is technology, driven by a stationary AR(1) process, at = ln(At)

at = ρaat−1 + ϵa,t , (125)

ϵa,t ∼2 (0,σ2
a). The marginal productivity of labour is then

∂ Yt

∂ Nt

= At(1−α)N−αt (126)

or, in log-linear form: at + ln(1−α)−αnt . From textbook microeconomics, we can show that

marginal cost is equal to the wage rate W divided by the marginal product of labour.10 Let Υt

denote marginal cost, and we have

Υt =Wt

1

At(1−α)N−αt

which in log-linear form is

lnΥt = wt − (at + ln(1−α)−αnt)

= wt − ln(1−α)− (at −αnt)

= wt − ln(1−α)−
1

1−α
(at −αyt) (127)

where we’ve used a log-linear form of the production function, yt = at + (1−α)nt . As we’re

used to dealing with (log) deviations from steady-state values, let µt = lnΥt − lnΥ ∗, i.e., drop

the constant ln(1−α). We can iterate (127) forward to period t + k for both the flexible price

case and the firm which last reset prices at time t, which we denote by µt+k|t , to see

µt+k = wt+k −
1

1−α
(at+k −αyt+k)

µt+k|t = wt+k −
1

1−α
(at+k −αyt+k|t)

10For those unfamiliar with this, note that total cost T C =W N (there’s no capital in this model). Marginal cost

is ∂ T C
∂ Y =

∂W N
∂ Y =W ∂ N

∂ Y . Notice that, by the inverse function theorem, ∂ N
∂ Y is the inverse of the marginal product of

labour, ∂ Y
∂ N , thus Υ = W

M PN .
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respectively. Taking the latter away from the former yields

µt+k|t = µt+k +
α

1−α
(yt+k|t − yt+k) (128)

If α= 0, we have µt+k|t = µt+k. Keep (128) in mind for later.

9.2.4. The Firm

With the demand function Yt(k) =
:

Pt(k)
Pt

;−ϑ
Yt in mind, we move on to the problem of the

firm, where the pricing mechanism in the economy is based on Calvo (1983). In this economy,

(1 − θ) of firms are able to reset prices in a given period (for example, time t), which they

set equal to X t , and the proportion of firms who cannot reset their prices at time t set prices

equal to last period’s price, Pt−1.

The firm which last reset prices at time t wants to maximise profit

max
Xt

$t

P∞∑

k=0

(θβ)k
)
Yt+k|t( j)X t − C

)
Yt+k|t( j)

**
Q

, (129)

where C(·) is the nominal cost function, subject to the t + k demand function

Yt+k|t( j) =

5
X t

Pt+k

6−ϑ
Yt+k (130)

After substituting for the demand functions, the maximization problem is given by

max
Xt

$t

P∞∑

k=0

(θβ)k
)
Yt+kPϑt+kX 1−ϑ

t − C
)
Yt+kPϑt+kX−ϑt

**
Q

(131)

The first-order condition with respect to X t is given by

$t

P∞∑

k=0

(θβ)k
)
Yt+kPϑt+k(1− ϑ)X

−ϑ
t − C ′

)
Yt+kPϑt+kX−ϑt

*
(−ϑYt+kPϑt+kX−ϑ−1

t )
*
Q

= 0 (132)

$t

P∞∑

k=0

(θβ)k
)
Yt+kPϑt+k(1− ϑ)X

−ϑ
t

*
+

∞∑

k=0

(θβ)k
)
Υt+k|tϑYt+kPϑt+kX−ϑ−1

t

*
Q

= 0

$t

P

(1− ϑ)X−ϑt

∞∑

k=0

(θβ)k
)
Yt+kPϑt+k

*
+ (ϑX−ϑ−1

t )

∞∑

k=0

(θβ)k
)
Yt+kPϑt+kΥt+k|t

*
Q

= 0
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We can this re-write as

(ϑ− 1)X−ϑt

X−ϑ−1
t

$t

P∞∑

k=0

(θβ)k
)
Yt+kPϑt+k

*
Q

= ϑ$t

P∞∑

k=0

(θβ)k
)
Yt+kPϑt+kΥt+k|t

*
Q

X t$t

P∞∑

k=0

(θβ)k
)
Yt+kPϑt+k

*
Q

=
ϑ

(ϑ− 1)
$t

P∞∑

k=0

(θβ)k
)
Yt+kPϑt+kΥt+k|t

*
Q

implying

X t =
ϑ

ϑ− 1

$t

'∑∞
k=0 (θβ)

k
)
Yt+kPϑ

t+k
Υt+k|t

*(

$t

'∑∞
k=0 (θβ)

k
)
Yt+kPϑ

t+k

*( . (133)

In the steady-state, where X t = X t−1 = X ∗,

X ∗ =
ϑ

ϑ− 1

$t

'∑∞
k=0 (θβ)

k
)
Y ∗ (P∗)ϑ Υ ∗

*(

$t

'∑∞
k=0 (θβ)

k
)
Y ∗ (P∗)ϑ

*(

=
ϑ

ϑ− 1
Υ
∗

This is where we can clearly see the interpretation of ϑ as a markup over marginal cost; if,

for example, ϑ = 10, X ∗ = 1.111 · Υ ∗ in steady-state. If we log-linearize (132), the left- and

right-hand sides are

(1− ϑ)Yt+kPϑt+kX−ϑt ≈ (1− ϑ)Y
∗ (P∗)ϑ (X ∗)−ϑ (1+ yt+k + ϑpt+k − ϑxt) (134)

ϑΥt+k|tYt+kPϑt+kX−ϑ−1
t ≈ ϑΥ ∗Y ∗ (P∗)ϑ (X ∗)−ϑ−1 (1+µt+k|t + yt+k + ϑpt+k − (ϑ+ 1)xt)

(135)

respectively. Replacing Υ ∗ in (135)

ϑ
ϑ− 1

ϑ
X ∗Y ∗ (P∗)ϑ (X ∗)−ϑ−1 (1+µt+k|t + yt+k + ϑpt+k − (ϑ+ 1)xt)

Therefore, a first-order approximation of (132) is

$t

P∞∑

k=0

(θβ)k
)
(1− ϑ)Y ∗ (P∗)ϑ (X ∗)−ϑ (1+ yt+k + ϑpt+k − ϑxt)

−(1− ϑ)Y ∗ (P∗)ϑ (X ∗)−ϑ (1+µt+k|t + yt+k + ϑpt+k − (ϑ+ 1)xt)
*(
= 0
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which can be reduced to

$t

P∞∑

k=0

(θβ)k (xt −µt+k|t)

Q

= 0

Now, recall our relationship between µt+k|t and µt+k in equation (128): if we log-linearize

the demand function

Yt+k|t( j) =

5
X t

Pt+k

6−ϑ
Yt+k

we see that yt+k|t − yt+k = −ϑ(xt − pt+k), and combining this with (128) we get

µt+k|t = µt+k −
αϑ

1−α
(xt − pt+k) (136)

We can plug this into $t

'∑∞
k=0 (θβ)

k (xt −µt+k|t)
(
= 0,

0= $t

P∞∑

k=0

(θβ)k (xt −µt+k +
αϑ

1−α
(xt − pt+k))

Q

0= $t

P∞∑

k=0

(θβ)k
1+α(ϑ− 1)

1−α
xt −

∞∑

k=0

(θβ)k
5
(1−α)µt+k +αϑpt+k

1−α

6Q

0= $t

P
1+ α(ϑ− 1)

1− θβ
xt −

∞∑

k=0

(θβ)k ((1−α)µt+k +αϑpt+k)

Q

Rearranging

1+α(ϑ− 1)

1− θβ
xt = $t

P∞∑

k=0

(θβ)k ((1−α)µt+k +αϑpt+k)

Q

⇒ xt =
1− θβ

1+α(ϑ− 1)

∞∑

k=0

(θβ)k$t ((1−α)µt+k +αϑpt+k)

We can save ourselves some algebraic trouble later by using real marginal cost, µr
t = µt − pt ,

instead of nominal marginal cost. The new form is

xt =
1− θβ

1+α(ϑ− 1)

∞∑

k=0

(θβ)k$t

)
(1−α)(µr

t+k + pt+k) +αϑpt+k

*

=
1− θβ

1+α(ϑ− 1)

∞∑

k=0

(θβ)k$t

)
(1−α)µr

t+k + (1+α(ϑ− 1))pt+k

*

Notice that we have 1 + α(ϑ − 1) next to pt+k, which is also the denominator of
1−θβ

1+α(ϑ−1) .
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Define Θ = 1−α
1+α(ϑ−1) , and we now have the simpler expression

xt = (1− θβ)
∞∑

k=0

(θβ)k$t

)
Θµr

t+k + pt+k

*

From equation (118), the (aggregate) price level,

Pt =

K∫ 1

0

Pt(i)
1−ϑdi

L 1
1−ϑ

P1−ϑ
t =

∫ 1

0

Pt(i)
1−ϑdi,

can be written as:

P1−ϑ
t = (1− θ)X 1−ϑ

t + θ

∫ θ

0

Pt−1(i)
1−ϑdi

=
'
(1− θ)X 1−ϑ

t + θP1−ϑ
t−1

(

If we assume a zero inflation steady-state, Pt = X t = Pt−1 = P∗, we can log-linearize the above

equation as follows:

(P∗)1−ϑ (1+ (1− ϑ)pt ) =
'
(1− θ) (P∗)1−ϑ (1+ (1− ϑ)xt) + θ (P

∗)1−ϑ (1+ (1− ϑ)pt−1)
(

which simplifies to

pt = (1− θ)xt + θ pt−1 (137)

Note that

xt = (1− θβ)
∞∑

k=0

(θβ)k$t

)
Θµr

t+k + pt+k

*

can be written in a format such as

xt = (1− θβ)(Θµr
t + pt) + θβ$t x t+1 (138)

as the equation with the infinite sum is the standard solution to the first-order stochastic
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difference equation. Rewrite (137) as

xt =
1

(1− θ)
(pt − θ pt−1)

and substitute into (138) to get

xt = (1− θβ)(Θµr
t + pt) + (θβ)$t x t+1

⇒
1

(1− θ)
(pt − θ pt−1) = (1− θβ)(Θµr

t + pt) + (θβ)$t

5
1

(1− θ)
(pt+1 − θ pt)

6

pt − θ pt−1 = (1− θ)(1− θβ)(Θµr
t + pt) + (θβ)$t (pt+1 − θ pt)

pt − θ pt−1 = (1− θ)(1− θβ)(Θµr
t + pt) + (θβ)$t (pt+1)− (θβ)θ pt

pt(1+ θ
2β)− θ pt−1 = (1− θ)(1− θβ)(Θµr

t + pt) + θβ$t (pt+1) (139)

Divide both sides by θ and subtract βpt from both sides,

pt

(1+ θ2β)

θ
− pt−1 − βpt =

(1− θ)(1− θβ)
θ

(Θµr
t + pt) + β$t (pt+1)− βpt

pt

(1− θβ + θ2β)

θ
− pt−1 =

(1− θ)(1− θβ)
θ

(Θµr
t + pt) + β$t (pt+1 − pt)

pt

(1− θβ + θ2β)

θ
− pt−1 =

(1− θ)(1− θβ)
θ

(Θµr
t + pt) + β$tπt+1 (140)

Note that,
(1− θβ + θ2β)

θ
= 1+

(1− θ)(1− θβ)
θ

so

pt

5
1+
(1− θ)(1− θβ)

θ

6
− pt−1 =

(1− θ)(1− θβ)
θ

(Θµr
t + pt) + β$tπt+1

πt = β$tπt+1 +
(1− θ)(1− θβ)

θ
(Θµr

t + pt − pt) (141)

Or

πt = β$tπt+1 +
(1− θ)(1− θβ)

θ
Θµr

t (142)

Equation (142) is known as the New-Keynesian Phillips Curve (NKPC).

As we’ve assumed diminishing returns to scale in the production function, i.e., that higher

output reduces marginal productivity and raises marginal cost, this implies that real marginal
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cost is a function of the output gap

y
g
t = yt − yn

t (143)

where yn
t is the path of output that would have obtained in a zero inflation, frictionless econ-

omy. Using the first-order conditions with respect to Ct and Nt from the maximization problem

in (121) (subject to (122)), we see

P−1
t C
−1/η
t = N

φ
t W−1

t ,

which in log-linear form is
1

η
ct +φnt = wt − pt .

Recall that marginal cost is

µr
t + pt = wt −

1

1−α
(at −αyt)

µr
t = (wt − pt) +

1

1−α
(αyt − at)

=

5
1

η
ct +φnt

6
+

1

1−α
(αyt − at)

Now, using the fact that yt = ct and nt =
yt−at

1−α (from the market clearing condition and the

production function, respectively), we can proceed as

µr
t =

1

η
yt +φ

yt − at

1−α
+
αyt − at

1−α

=

5
1

η
+
φ +α

1−α

6
yt −

1+φ

1−α
at

Under flexible prices µr
t = 0, i.e., the log-deviation of real marginal cost from its steady-
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state value should be zero, thus

0=

5
1

η
+
φ +α

1−α

6
yn

t −
1+φ

1−α
at

yn
t =

5
1

η
+
φ +α

1−α

6−1 1+φ

1−α
at

=

5
1− α
η(1−α)

+
η(φ +α)

η(1−α)

6−1 1+φ

1−α
at

=

5
η(1−α)

1−α+η(φ +α)

6
1+φ

1−α
at

⇒ yn
t =

5
η(1+φ)

1−α+η(φ +α)

6
at

Therefore, we can write real marginal cost as

µr
t =

5
1

η
+
φ +α

1−α

6
(yt − yn

t )

and the final form of the NKPC is

πt = β$tπt+1 + κy
g
t (144)

where

κ =
(1− θ)(1− θβ)

θ
Θ

5
1

η
+
φ +α

1−α

6
(145)

One important point to note is that a lot of this additional work is based on some value of

α ∈ (0,1). If α= 0 then

κ =
(1− θ)(1− θβ)(η−1 +φ)

θ

which is the standard definition for models without diminishing returns to scale.

Going back to the forward-looking IS equation, we can include the output gap to give

y
g
t = $t y

g
t+1 −η(it −$tπt+1) +$t yn

t+1 − yn
t

Or, more naturally, as

y
g
t = $t y

g
t+1 −η(it −$tπt+1 − rn

t ) (146)

where

rn
t = η

−1
$t∆yn

t+1 (147)
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and ∆ is the first-difference operator. This equation defines a “natural” real interest rate, rn
t

(consistent with y
g
t = $t y

g
t+1) determined by technology and preferences.

To determine the nominal interest rate, we can use a monetary policy reaction function

it = φππt +φy y
g
t + vt (148)

a version of the so-called ‘Taylor rule’. The ‘shock’ in this equation, vt , can be interpreted as

a change to the non-systematic component of monetary policy. Equations (144), (146), and

(148) form the three equation New-Keynesian model.

Before we finish, it’s useful to give an alternative form for the natural rate,

rn
t = η

−1
$t∆yn

t+1

We’ve already seen that

yn
t =

η(1+φ)

1−α+η(φ +α)
at ,

rn
t then becomes

rn
t =

1+φ

1−α+η(φ +α)
$t∆at+1

⇒ rn
t =

1+φ

1−α+η(φ +α)
(ρa − 1)at (149)

as $t at+1 = ρat .
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9.2.5. Inputting the Model to BMR

The full model is a system of 8 equations, six endogenous processes

y
g
t = $t y

g
t+1 −η(it −$tπt+1 − rn

t ) (150)

πt = β$tπt+1 + κy
g
t (151)

it = φππt +φy y
g
t + vt (152)

rn
t =

1+φ

1−α+η(φ +α)
(ρa − 1)at (153)

yt = at + (1−α)nt (154)

y
g
t = yt −

η(1+φ)

1−α+η(φ +α)
at (155)

with two exogenous shocks, technology and monetary policy,

at = ρaat−1 + ϵa,t (156)

vt = ρv vt−1 + ϵv,t (157)

respectively.

Note that there are no lags in any of the above equations, except for the shocks, so we

have no natural candidates for control variables. With a problem like this, we can set up the

matrices to use the ‘brute-force’ method

0= $t {Fζt+1 + Gζt +Hζt−1 + Lzt+1 +Mzt}

zt = Nzt−1 + ϵt

with solution

ζt = Pζt−1 +Qzt

zt = Nzt−1 + ϵt

and final form being

ξt =>ξt−1 +?ϵt .
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In order, the matrices of variables are

ζt = [y
g
t yt πt rn

t it n]⊤

zt = [at vt]
⊤

The matrices of deep parameters are as follows. For the 6 main equations

A= B = C = D = J = K = []0×0

F =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−1 0 −η/4 0 0 0

0 0 −β/4 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 0 −η η/4 0

−κ 0 0.25 0 0 0

−φy 0 −φπ/4 0 0.25 0

0 0 0 1 0 0

0 1 0 0 0 −(1−α)

1 −1 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

H = [06×6]
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For the 2 shocks

L = [06×2]

M =

⎡

⎢⎢
⎣

0 0 0 −ψ(ρa − 1)/η −1 ψ

0 0 −1 0 0 0

⎤

⎥⎥
⎦

⊤

N =

⎡

⎢⎢
⎣
ρa 0

0 ρv

⎤

⎥⎥
⎦

where ψ=
η(1+φ)

1−α+η(φ+α) .

The reader may have noticed that some series were divided by 4 in the F and G matrices.

The reason for this is to replicate the IRFs shown in (Galí, 2008, Ch. 3), as Galí annualises

inflation and interest rates. Further to this effort, let’s calibrate the parameters to be: η = 1,

α = 1/3, β = 0.99, θ = 2/3, φ = 1, φπ = 1.5, φy = 0.125, ρa = 0.9, ρv = 0.5. The solution

is then

P = [06×6]

Q =

⎡

⎢⎢
⎣
−0.107402 0.8925972 −0.50556250 −0.1 −0.8120451 −0.1603027

−1.137656 −1.137656 −1.155860 0 1.697382 −1.69799

⎤

⎥⎥
⎦

⊤

The impulse response functions to technology and monetary policy shocks, of orderσa = 1

and σv = 0.25, are shown in figures 30 and 31, respectively.
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Figure 30: Shock to Technology.
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Figure 31: Shock to Monetary Policy.
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9.2.6. Estimation

Estimating an RBC model with model-generated data is fine for illustrative purposes. In this

section, we will use the updated Stock and Watson dataset (from the monetary policy VAR

example) to estimate the parameters of the basic New-Keynesian model. To avoid a situation

of stochastic singularity, we cannot have more observable series than ‘shocks,’ thus we restrict

our attention to inflation and the Federal Funds rate. As we’re dealing with mean-zero series

in the model, the reader can demean the series first.

Begin by defining the observable matrixA , and recall that our series are ordered according

to ζt = [y
g
t yt πt rn

t it n]⊤, with a technology shock and monetary policy shock at the end.

Thus,

ObserveMat <- cbind(c(0,0,4,0,0,0,0,0),

c(0,0,0,0,4,0,0,0))

Define the parameter names in their respective order

parnames <- c("Alpha","Beta","Vartheta","Theta","Eta","Phi",

"Phi.Pi", "Phi.Y","RhoA","RhoV","SigmaT","SigmaM")

Our initial values are similar to the values we used for our calibration exercise,

initialvals <- c(.33,0.97,6,0.6667,1,1,1.5,0.5/4,0.90,0.5,1,0.25)

Assign prior densities to each of the parameters

priorform <- c("Normal","Beta","Normal","Beta","Normal","Normal",

"Normal","Normal","Beta","Beta","IGamma","IGamma")

and the relevant parameters of these densities,

priorpars <- cbind(c( 0.33,20,5, 3, 1, 1, 1.5, 0.7,3, 4,2,2),

c(0.05^2, 2,1, 2,0.1^2,0.3^2,0.1^2,0.1^2,2,1.5,2,1))

with appropriate upper- and lower-bounds

parbounds <- cbind(c(NA, 0.95,NA, 0.01,NA,NA,NA,NA, 0.01, 0.01,NA,NA),

c(NA,0.99999,NA,0.999,NA,NA,NA,NA,0.999,0.999,NA,NA))
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To estimate the posterior mode, we first use a simplex method, then a conjugate gradient

method. We will run 2 chains of 125,000 draws each, 75,000 of which will be discarded as

burn-in, with the scaling parameter set to 0.27. Rather than running the chains sequentially,

we set the number of CPU cores to the number of chains, so that the chains will run in parallel.

(Make sure you don’t set more cores than your computer can handle!)

NKMest <- EDSGE(dsgedata,chains=2,cores=2,

ObserveMat,initialvals,partomats,

priorform,priorpars,parbounds,parnames,

optimMethod=c("Nelder-Mead","CG"),

optimLower=NULL,optimUpper=NULL,

optimControl=list(maxit=10000),

DSGEIRFs=TRUE,irf.periods=40,

scalepar=0.27,keep=50000,burnin=75000)

Trying to solve the model with your initial values... Done.

Beginning optimization, Tue Jul 8 11:33:38 2014.

Using Optimization Method: Nelder-Mead.

Using Optimization Method: CG. Change in the log posterior: 1.69529.

Optimization over, Tue Jul 8 11:34:05 2014.

Optimizer Convergence Code: 0; successful completion.

Optimizer Iterations:

function gradient

1908 698

Log Marginal Likelihood: -554.2439.

Parameter Estimates and Standard Errors (SE) at the Posterior Mode:

Estimate SE

Alpha 0.3321654 0.049859677
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Beta 0.9955405 0.004056926

Vartheta 5.0705516 0.992600544

Theta 0.7766846 0.042850061

Eta 0.9864517 0.099302813

Phi 0.9771752 0.300882397

Phi.Pi 1.4865530 0.098942742

Phi.Y 0.6790696 0.099636942

Rho.A 0.9507074 0.019816684

Rho.V 0.7680469 0.042108072

Sigma.T 2.7408834 0.662286625

Sigma.M 1.1123389 0.162952324

Beginning MCMC run, Tue Jul 8 11:34:05 2014.

MCMC run finished, Tue Jul 8 11:37:05 2014.

Acceptance Rate: Chain 1: 0.36978; Chain 2: 0.37132.

Root-R Chain-Convergence Statistics:

Alpha Beta Vartheta Theta Eta Phi Phi.Pi Phi.Y Rho.A

Stat: 1.000001 1.000025 1.00016 0.9999959 1.000038 1.000004 1.000001 1.000025 1.00016

Rho.V Sigma.T Sigma.M

Stat: 0.9999959 1.000038 1.000004

Parameter Estimates and Standard Errors:

Posterior.Mode SE.Mode Posterior.Mean SE.Posterior

Alpha 0.3321654 0.049859677 0.3329884 0.050109563

Beta 0.9955405 0.004056926 0.9955043 0.002924794

Vartheta 5.0705516 0.992600544 5.1012167 1.004772073

Theta 0.7766846 0.042850061 0.7776043 0.042314780

Eta 0.9864517 0.099302813 0.9833182 0.100543766

Phi 0.9771752 0.300882397 0.9743492 0.305949294
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Phi.Pi 1.4865530 0.098942742 1.4880491 0.097892153

Phi.Y 0.6790696 0.099636942 0.6826578 0.099160984

Rho.A 0.9507074 0.019816684 0.9526904 0.016571630

Rho.V 0.7680469 0.042108072 0.7698100 0.042105670

Sigma.T 2.7408834 0.662286625 3.1518228 1.062444794

Sigma.M 1.1123389 0.162952324 1.1548837 0.205666807

Computing IRFs now... Done.

And we’re finished with estimation. The reader can plot the results using:

plot(NKMest,save=TRUE)

IRF(NKMest,FALSE,varnames=c("Output Gap","Output","Inflation",

"Natural Int","Nominal Int","Labour Supply","Technology",

"MonetaryPolicy"),save=TRUE)

the results of which are shown in figures 33, 34, and 35.

Finally, we can evaluate the optimization routine by plotting the value of the log posterior

using the mode values and one standard deviation either sider of them (scaled by c), ±c ·σ,

where σ is from the inverse-Hessian at the posterior mode, holding all other parameters fixed

at their mode values. The relevant code is:

modecheck(NKMest,1000,1,plottransform=FALSE,save=TRUE)

and the result is illustrated in figure 32, with the green line being the value of the log posterior

for different values of the parameters, the dashed line being the mode value for that parameter.



144

-543.5

-543.0

-542.5

0.30 0.33 0.36

Lo
g 

Po
st

er
io

r

-542.7

-542.5

-542.3

0.992 0.994 0.996 0.998

Lo
g 

Po
st

er
io

r

Beta

-546

-545

-544

-543

-542

4.0 4.5 5.0 5.5 6.0

Lo
g 

Po
st

er
io

r

-580

-570

-560

-550

0.750 0.775 0.800

Lo
g 

Po
st

er
io

r

-544.0

-543.5

-543.0

-542.5

0.90 0.95

Lo
g 

Po
st

er
io

r

-546

-544

-542

0.8

Lo
g 

Po
st

er
io

r

Phi

-542.9

-542.7

-542.5

-542.3

Lo
g 

Po
st

er
io

r

Phi.Pi

-544

-543

0.60 0.65 0.70 0.75

Lo
g 

Po
st

er
io

r

-550

-545

0.93 0.94 0.95 0.96

Lo
g 

Po
st

er
io

r

-556

-552

-548

-544

0.74 0.76 0.78 0.80

Lo
g 

Po
st

er
io

r

-560

-555

-550

-545

2.4 2.8 3.2 3.6

Lo
g 

Po
st

er
io

r

-546

-544

-542

Lo
g 

Po
st

er
io

r

Figure 32: Plot of the Log-Posterior at the Posterior Mode.
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Figure 34: Shock to Technology.
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Figure 35: Shock to Monetary Policy.
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9.3. A Rather More Complicated Affair

The ‘baseline’ model discussed in Fernández-Villaverde and Rubio-Ramírez (2006), Fernández-

Villaverde et al. (2009), and Fernández-Villaverde (2010) forms an excellent example of the

foundations of a state of the art DSGE model, equipped with many of the rigidities found in

operational-level medium-sized DSGE models currently being used in many macroeconomic

policy making institutions. The model is similar to the well-known models of Christiano et al.

(2005) and Smets and Wouters (2007), and, for those interested in working through some-

thing a little smaller, a somewhat more complicated model than that of Schorfheide (2011)

by including habit formation in consumption and wage rigidities.

Households maximise lifetime utility according to

$0

∞∑

t=0

β t dt

⎧
⎨

⎩
ln(Cj,t − hCj,t−1) + ν ln

5Mj,t

Pt

6
−ϕtψ

:
Ls

j,t

;1+ϑ

1+ ϑ

⎫
⎬

⎭
(158)

where Ct is consumption, h ∈ [0,1) is a habit formation parameter, Mt is money holdings,

Ls
t is labour, 1/ϑ is the Frisch elasticity of labour supply, and dt and ϕt are intertemporal

preference and labour supply shocks, respectively, driven by

ln dt = ρd ln dt−1 + ϵd,t (159)

lnϕt = ρϕ lnϕt−1 + ϵϕ,t (160)

ϵd,t ∼ 2 (0,σ2
d
) and ϵϕ,t ∼ 2 (0,σ2

ϕ). The per-period budget constraint of households is

given by

Cj,t + I j,t +
Mj,t

Pt

+
Bj,t+1

Pt

+

∫
qj,t+1,t a j,t+1,t dω j,t+1,t

=Wj,t Ls
j,t +

)
rtuj,t −µ−1

Φ[uj,t]
*

Kj,t−1 +
Mj,t−1

Pt

+ Rt−1

Bj,t−1

Pt

+ aj,t + Tt + Ft

where It is investment, Bt are government bonds, at is the amount of Arrow-Debreu securities

that pay Ct in eventω j,t+1,t which cost qt , Wt is the wage rate, rt is the rental price of capital,

uj,t is the utilisation rate of capital, µ−1
Φ[uj,t] is the cost of uj,t , Tt are government transfers,

and Ft is the household’s share of firm profits.
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The law of motion for capital, Kt , is given by

Kj,t = (1−δ)Kj,t−1 +µt

X
1− S

I
I j,t

I j,t−1

JY
I j,t (161)

where µt is an investment-specific technological shock,

µt = µt−1 exp(Λµ + zµ,t) (162)

zµ,t = ϵµ,t , ϵµ,t ∼2 (0,σ2
µ).

The first-order conditions of the households’ maximization problem, with respect to Cj,t ,

Bj,t , uj,t , Kj,t , I j,t , and Mj,t are given by

λ j,t =
dt

(Cj,t − hCj,t−1)
− hβ$t

]
dt+1

(Cj,t+1 − hCj,t)

^

λ j,t = β$t

$
λ j,t+1

Rt

Πt+1

%

rt = µ
−1
t Φ
′[uj,t]

C j,t = β$t

]
λ j,t+1

λ j,t

)
(1−δ)C j,t+1 + rt+1uj,t+1 +µ

−1
t+1Φ[uj,t+1]

*
^

1=C j,tµt

X
1− S

I
I j,t

I j,t−1

J
− S′

I
I j,t

I j,t−1

J
I j,t

I j,t−1

Y
+

β$t

3
C j,t+1λ j,t+1

λ j,t

µt+1S′
I

I j,t

I j,t−1

JX
I j,t

I j,t−1

Y2
4

Πt+1 = Pt/Pt−1, where the first-order conditions’s for wages , Wj,t , and labour supply, Ls
j,t ,

are given below.

The ‘labour packer’ uses the production function

Ld
t =

K∫ 1

0

:
Ls

j,t

; η−1
η

d j

L η
η−1

(163)

to aggregate labour and sell it as a ‘labour good’ to producers. Their maximization problem is

given by

max
Ls

j,t

Wt Ld
t −

∫ 1

0

Wj,t Ls
j,t d j (164)

As we observed with the basic New-Keynesian model, this will yield demand functions of the
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form

Ls
i,t =

5
Wi,t

Wt

6−η
Ld

t

by using a zero profit condition,

∫ 1

0

Wj,t Ls
j,t d j =Wt Ld

t (165)

and the aggregate wage index, Wt , is given by

Wt =

K∫ 1

0

W
1−η
j,t d j

L 1
1−η

. (166)

A fraction, 1 − θw, of households can adjust their wages in a given period, say t, and

the fraction who cannot reset their wages, θw, partially index their wages to past inflation,

Πt = Pt/Pt−1, where indexation is controlled by the parameter χw ∈ [0,1]. The maximization

problem for the household is

max
Wj,t

$t

∞∑

τ=0

θτwβ
τ

⎧
⎨

⎩
−dt+τϕt+τψ

:
Ls

j,t+τ

;1+ϑ

1+ ϑ
+λ j,t+τ

τ∏

s=1

Π
χw

t+s−1

Πt+s

Wj,t Ls
j,t+τ

⎫
⎬

⎭
(167)

subject to

Ls
j,t+τ =

K
τ∏

s=1

Π
χw

t+s−1

Πt+s

Wj,t

Wt+τ

L−η
Ld

t+τ (168)

The first-order condition of this problem is

η− 1

η
W ∗t $t

∞∑

τ=0

(βθw)
τλt+τ

K
τ∏

s=1

Π
χw

t+s−1

Πt+s

L1−ηX
W ∗t

Wt+τ

Y−η
Ld

t+τ

= $t

∞∑

τ=0

(βθw)
τ

G

dt+τϕt+τψ

K
τ∏

s=1

Π
χw

t+s−1

Πt+s

W ∗t
Wt+τ

L−η(1+ϑ) )
Ld

t+τ

*1+ϑ
H

(169)

We can define this recursively by using auxiliary variables: set the left-hand side of the first-
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order condition above equal to > (1)t , and > (2)t for the right-hand side, with > (1)t => (2)t ,

> (1)t =
η− 1

η
W ∗t $t

∞∑

τ=0

(βθw)
τλt+τ

K
τ∏

s=1

Π
χw

t+s−1

Πt+s

L1−ηX
Wt+τ

W ∗t

Yη
Ld

t+τ

> (2)t = $t

∞∑

τ=0

(βθw)
τdt+τϕt+τψ

K
τ∏

s=1

Π
χw

t+s−1

Πt+s

L−η(1+ϑ)X
Wt+τ

W ∗t

Yη(1+ϑ) )
Ld

t+τ

*1+ϑ

Now note that we can rewrite > (1)t as

> (1)t =
η− 1

η

)
W ∗t
*1−η

λtW
η
t Ld

t + βθw$t

X
Π
χw
t

Πt+1

Y1−ηX
W ∗t+1

W ∗t

Yη−1

> (1)t+1 (170)

Doing the same for > (2)t ,

> (2)t = dtϕtψ

X
W ∗t
Wt

Y−η(1+ϑ)
+ βθw$t

X
Π
χw
t

Πt+1

Y−η(1+ϑ)X
W ∗t+1

W ∗t

Yη(1+ϑ)
> (2)t+1 (171)

where W ∗t denotes the optimal wage. In a symmetric equilibrium, 1− θw of households set

W ∗t as their wage, so the real wage index evolves as a (geometric) average of past real wages

and the optimal wage,

W
1−η
t = θw

X
Π
χw

t−1

Πt

Y1−η

W
1−η
t−1 + (1− θw)

)
W ∗t
*1−η

. (172)

The production function of the final good domestic producer is given by

Y d
t =

K∫ 1

0

)
Yi,t

* ϵ−1
ϵ di

L ϵ
ϵ−1

(173)

which aggregates the output of intermediate goods producers. The maximization problem for

the final good producer is

max
Yi,t

Pt

K∫ 1

0

)
Yi,t

* ϵ−1
ϵ di

L ϵ
ϵ−1

−
∫ 1

0

Pi,t Yi,t d i (174)
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which, as in the case of wages, results in demand functions of the form

Yi,t =

5
Pi,t

Pt

6−ϵ
Y d

t (175)

for an arbitrary i and the price index is defined as

Pt =

K∫ 1

0

P1−ϵ
i,t d i

L− 1
1−ϵ

(176)

Intermediate goods are produced according to the technology

Yi,t = At K
α
i,t−1

:
Ld

i,t

;1−α
−φzt (177)

where α is capital’s share of income, φ is a fixed cost, and At is a ‘neutral technology shock’

given by

At = At−1 exp(ΛA+ zA,t) (178)

zA,t = ϵA,t and ϵA,t ∼ 2 (0,σ2
A). Note that this introduces a second unit-root into the model

(the first being µt). We can define

zt = A
1

1−α
t µ

α
1−α
t (179)

which implies that economic profits, in the long-run, will be approximately zero, and we can

also write zt as

zt = zt−1 exp(Λz + zz,t) (180)

where

zz,t =
zA,t +αzµ,t

1−α
(181)

with

Λz =
ΛA+αΛµ

1−α
(182)

Intermediate goods producers first minimise cost according to

min
Ld

i,t ,Ki,t−1

Wt Ld
i,t + rt Ki,t−1 (183)
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such that

Yi,t =max
-

At K
α
i,t−1

:
Ld

i,t

;1−α
−φzt , 0

2
(184)

by taking input prices as given and assuming perfectly competitive factor markets. The first-

order conditions of this problem, along with real cost, Wt Ld
i,t + rt Ki,t−1, and the production

function, can be used to find real marginal cost, MCt ,

MCt =

5
1

1−α

61−α 51

α

6α 1

At

W 1−α
t rαt (185)

Then, firms solve a maximization problem by choosing an optimal price, where 1 − θp

percent of firms can reset their prices in a given period, and θp percent of firms that index

their prices to past inflation. Indexation is controlled by χ ∈ [0,1], where χ = 1 is full

indexation. The problem of the firm is then

max
Pi,t

$t

∞∑

τ=0

(βθp)
τ λt+τ

λt

3K
τ∏

s=1

Π
χ
t+s−1

Pi,t

Pt+τ

−MCt+τ

L

Yi,t+τ

4

(186)

subject to

Yi,t+τ =

K
τ∏

s=1

Π
χ
t+s−1

Pi,t

Pt+τ

L−ϵ
Y d

t+τ (187)

The first-order condition of this problem is

$t

∞∑

τ=0

(βθp)
τ λt+τ

λt

_G

(1− ϵ)

K
τ∏

s=1

Π
χ
t+s−1

Πt+s

Pi,t

Pt

L1−ϵ
1

Pi,t

+ ϵ

K
τ∏

s=1

Π
χ
t+s−1

Πt+s

Pi,t

Pt

L−ϵ
1

Pi,t

MCt+τ

H

Y d
t+τ

`

= 0

Setting Pi,t = P∗i,t = P∗t , where ‘∗’ stands for the optimum,

$t

∞∑

τ=0

(βθp)
τλt+τ

_G

(1− ϵ)

K
τ∏

s=1

Π
χ
t+s−1

Πt+s

L1−ϵ
P∗t
Pt

+ ϵ

K
τ∏

s=1

Π
χ
t+s−1

Πt+s

L−ϵ
MCt+τ

H

Y d
t+τ

`

= 0

As before, we can rewrite this recursively by using auxiliary variables,

? (1)t = $t

∞∑

τ=0

(βθp)
τλt+τ

3K
τ∏

s=1

Π
χ
t+s−1

Πt+s

Lϵ
MCt+τY d

t+τ

4
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and

? (2)t = $t

∞∑

τ=0

(βθp)
τλt+τ

_K
τ∏

s=1

Π
χ
t+s−1

Πt+s

L1−ϵ
P∗t
Pt

Y d
t+τ

`

where ? (1)t and ? (2)t are related by the fact that ε? (1)t = (ε− 1)? (2)t . Now,

? (1)t = λt MCt Y
d
t +$tβθp

3X
Π
χ
t

Πt+1

Y−ϵ
? (1)t+1

4

(188)

and

? (2)t = λtΠ
∗
t Y d

t +$tβθp

3X
Π
χ
t

Πt+1

Y1−ϵ X
Π
∗
t

Π
∗
t+1

Y
? (2)t+1

4

(189)

where Π∗t = P∗t /Pt . Calvo pricing implies that the price index follows,

P1−ϵ
t = θp

)
Π
χ
t−1

*1−ϵ
P1−ϵ

t−1 + (1− θp)
)
P∗t
*1−ε

and dividing both sides by P1−ϵ
t , we can rewrite as

1= θp

X
Π
χ
t−1

Πt

Y1−ϵ

P1−ϵ
t−1 + (1− θp)

)
Π
∗
t

*1−ε

A nominal interest rate, Rt , is set by government according to a Taylor rule,

Rt

R∗
=

5
Rt−1

R∗

6γR
I5
Πt

Π∗

6γΠ XYt/Yt−1

Λyd

Yγy
J1−γR

exp(ξR
t ),

where ξR
t = ϵR,t , ϵR,t ∼2 (0,σR), is a monetary policy shock. This is financed through lump-

sum transfers Tt , such that the government runs a balanced budget,

Tt =

∫ 1

0
Mt( j)−Mt−1( j)d j

Pt

+

∫ 1

0
Bt+1( j)d j

Pt

− Rt

∫ 1

0
Bt( j)d j

Pt

(190)

The model is now closed, bar a few aggregation equations. Aggregate demand and aggre-

gate supply are

Y d
t = Ct + It +

1

µt

Φ[ut]Kt−1 (191)

Yt =
1

v
p
t

)
At(ut Kt−1)

α(Ld
t )

1−α −φzt

*
(192)
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respectively, where v
p
t is an inefficiency arising from price dispersion,

v
p
t =

∫ 1

0

5
Pi,t

Pt

6−ϵ
di (193)

Labour ‘packed’ is

Ld
t =

Lt

vw
t

(194)

where vw
t is an inefficiency arising from wage dispersion,

vw
t =

∫ 1

0

5
Wi,t

Wt

6−η
di (195)

By Calvo pricing, we have

v
p
t = θp

X
Π
χ
t−1

Πt

Y−ϵ
v

p
t−1 + (1− θp)

)
Π
∗
t

*−η
(196)

vw
t = θw

X
Π
χw

t−1

Πt

Y−η
vw

t−1 + (1− θw)
)
Π

w∗

t

*−η
(197)

As there are unit roots in the model, we can make the variables stationary by using: 9ct = Ct/zt ,

9λt = λtzt , 9rt = rtµt , 9qt = qtµt , 9it = It/zt , 9wt = Wt/zt , 9w∗t = W ∗t /zt , 9kt = Kt/(ztµt), and

9yd
t = Y d

t /zt .
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9.3.1. Steady State

The steady-state of this model is a little complicated. From Fernández-Villaverde and Rubio-

Ramírez (2006) we have that

9r =
1− (β/(9z9µ))(1−δ)

(β/(9z9µ))

R=
Π9z
β

Π
∗ =

K
1− θpΠ

−(1−ϵ)(1−χ)

1− θp

L1/(1−ϵ)

mc =
ϵ − 1

ϵ

1− βθpΠ
ϵ(1−χ)

1− βθpΠ
−(1−ϵ)(1−χ)Π

∗

Π
w∗ =

X
1− θwΠ

−(1−η)(1−χw)(9z)−(1−η)

1− θw

Y1/(1−η)

9w = (1−α)
.

mc
.α
9r

1α11/(1−α)

9w∗ = 9wΠw∗

9vp =
1− θp

1− θpΠ
(1−χ)ϵ (Π

∗)−ϵ

9vw =
1− θw

1− θwΠ
(1−χw)η(9z)η

(Πw∗)−η

l = 9vwld

Ω=
α

1−α
9w
9r
9z9µ

The authors use the following non-linear equation to determine the steady-state value for

labour demand ld ,

1− βθwz̃η(1+ϑ)Πη(1−χw)(1+ϑ)

1− βθwz̃η−1Π−(1−χw)(1−η)

=
ψ(Πw∗)−ηϑ(ld)ϑ

η−1
η w∗(1− hβ)dz̃

)
1− h

z̃

*−1
::

Ã
z̃ (v

p)−1Ωα − z̃µ̃−(1−δ)
z̃µ̃ Ω

;
ld − (vp)−1φ

;−1
(198)

To solve for ld , the authors note the need to use a root finder, but, using an assumption from a

later paper, there does exist an analytic solution for this equation, which is where my version

differs with theirs. For notational convenience, define the left hand side of the above equation
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as

Ξ=
1− βθwz̃η(1+ϑ)Πη(1−χw)(1+ϑ)

1− βθwz̃η−1Π−(1−χw)(1−η)

In (Fernández-Villaverde et al., 2009, Section 3.1) the authors set φ = 0, so

Ξ=
ψ(Πw∗)−ηϑ(ld)ϑ

η−1
η w∗(1− hβ)d

:
z̃2

z̃−h

;::
Ã
z̃ (v

p)−1Ωα − z̃µ̃−(1−δ)
z̃µ̃ Ω

;
ld
;−1

=
ψ(Πw∗)−ηϑ(ld)ϑ

η−1
η w∗(1− hβ)d

:
z̃2

z̃−h

;::
Ã(vp)−1Ωαµ̃−(z̃µ̃−(1−δ))Ω

z̃µ̃

;
ld
;−1

=
ψ(Πw∗)−ηϑ(ld)ϑ ld

η−1
η w∗(1− hβ)d

:
z̃3

z̃−h

;:
Ã(vp)−1Ωαµ̃−(z̃µ̃−(1−δ))Ω

µ̃

;−1

This can be rewritten as

ld =

P
Ξ

ψ(Πw∗)−ηϑ

K
η− 1

η
w∗(1− hβ)d

X
z̃3

z̃ − h

YX
Ã(vp)−1

Ω
αµ̃− (z̃µ̃− (1−δ))Ω

µ̃

Y−1
LQ 1

1+ϑ

(199)

This is messy, but would be computationally simpler when estimating such a model than using

numerical methods to solve for ld .11

If the reader prefers not to assume φ = 0, then simple application of a Newton-Raphson

algorithm will yield the desired result, i.e., set

g(ld) = −Ξ1 +
ψ(Ξ2(l

d)ϑ

Ξ3

)
Ξ4ld − (vp)−1φ

*−1

and find g(ld) = 0, where

Ξ1 =
1− βθwz̃η(1+ϑ)Πη(1−χw)(1+ϑ)

1− βθwz̃η−1Π−(1−χw)(1−η)

11l d is defined on !++, so we focus on the principal root, and ignore any complex roots.
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Ξ2 =ψ(Π
w∗)−ηϑ, Ξ3 =

η−1
η w∗(1− hβ)dz̃

)
1− h

z̃

*−1
, and

Ξ4 =

X
Ã

z̃
(vp)−1

Ω
α −

z̃µ̃− (1−δ)
z̃µ̃

Ω

Y

Let i ∈ [1,3 ] index the iterations, set
)
ld
*

0
= 0.0001, and ε= 10−8; then

)
ld
*

i+1
=
)
ld
*

i
−

g
))

ld
*

i

*

g′ ((ld)i)

where g′
))

ld
*

i

*
is approximated by a numerical derivative, i.e.,

g′
))

ld
*

i

*
≈

g
))

ld
*

i
+∆

*
− g

))
ld
*

i

*

∆

∆ = ‘small’. When |
)
ld
*

i+1
−
)
ld
*

i
|< ε, stop.

Having solved for ld , we use this for

9k = Ωld (200)

9i =
9z9µ− (1−δ)

9z9µ
9k (201)

9yd =

9A
9z

)9k
*α )

ld
*1−α

vp
(202)

9c =
X 9A
9z
(vp)−1

Ω
α −

z̃µ̃− (1−δ)
z̃µ̃

Ω

Y
ld (203)

And the model is complete.
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9.3.2. Log-linearized Model

For notational convenience, use the following definitions

Gp =
A∗
z∗
(u∗k∗)

α(ld
∗ )

1−α

φu =
γ2

γ1

G1 =
θwΠ

−(1−χw)(1−η)z
−(1−η)
∗

1− θw

(Πw∗)1−η

G2 =
θpΠ
−(1−ε)(1−χ)

1− θp

(Π∗)1−ε

G3 = βθpΠ
ε(1−χ)

G4 = θwΠ
η(1−χw)zη∗

G5 = βθwzη−1
∗ Π

−(1−η)(1−χw)

G6 = βθwzη(1+ϑ)∗ Π
η(1+ϑ)(1−χw)

G7 = βθpΠ
−(1−ε)(1−χ)

Expectational block:

dt = (1− hβz∗)λt + hβz∗$t dt+1 +
1+ (h2)β)

1− h
z∗

ct −
h

z∗(1−
h
z∗
)
$t ct−1 −

hβz∗

1− h
z∗

ct+1 +
h

z∗(1−
h
z∗
)
zt

λt = $tλt+1 + Rt −$tπt+1

qt = $tλt+1 −λt +
β(1−δ)

z∗µ∗)
$tqt+1 +

5
1−

β(1−δ)
z∗µ∗

6
$t rt+1

qt = κ(z
2
∗ )(it − it−1 + zt)− βκ(z2

∗ )($t it+1 − it)

ft = (1−G5)((1−η)w∗t +λ+ηwt + ld
t ) +G5($t ft+1 − (1−η)($tπt+1 − χwπt +$t w

∗
t+1 −w∗t))

ft = (1−G6)(dt +ϕt +η(1+ ϑ)(wt −w∗t) + (1+ ϑ)l
d
t )

+G6

)
$t ft+1 +η(1+ ϑ)($tπt+1 −χwπt +$t w

∗
t+1 −w∗t)

*

g
(1)
t = (1−G3)(λt +mct + yt) +G3(ε($tπt+1 −χπt) +$t g

(1)
t+1)

g
(2)
t = (1−G7)λt +π

∗
t + (1−G7)yt + (ε− 1)G7$tπt+1 −χ(ε− 1)G7πt −G7$tπ

∗
t+1 +G7$t g

(2)
t+1
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The deterministic block of the model is

w∗t −wt =G1πt −χwG1πt−1 +G1wt −G1wt−1 +G1zt

π∗t =G2πt −G2χπt−1

rt = φuut

ut = −kt−1 + ld
t +wt − rt + zt +µt

mct = (1− α)wt +αrt

Rt = γRRt−1 + (1− γR)γππt + (1− γR)γy(yt − yt−1 + zt) + ξ
R
t

y∗ yt = c∗ct + i∗it +
γ1k∗
z∗µ∗

ut

(y∗v
p
∗ )(v

p
t + yt) =Gp(At − zt +α(ut + kt−1) + (1−α)ld

t )

v
p
t =
G3

β
επt −χε

G3

β
πt−1 +

G3

β
v

p
t−1 −

5
1−
G3

β

6
επ∗t

vw
t =G4

)
η(πt −χwπt−1 +wt −wt−1 + zt) + vw

t−1

*
− (1−G4)η(w

∗
t −wt)

ls
t = vw

t + ld
t

kt =
1−δ
z∗µ∗

kt−1 +
z∗µ∗ − (1−δ)

z∗µ∗
it −

1−δ
z∗µ∗

(zt +µt)

zt =
At +αµt

1−α
g
(1)
t = g

(2)
t

And shocks

µt = ϵµ,t

dt = ρddt−1 + ϵd,t

ϕt = ρϕϕt−1 + ϵϕ,t

At = ϵA,t

ξR
t = ϵm,t

As an exercise, the reader can attempt to solve this model using the methodology previ-

ously outlined; hint: Fernández-Villaverde and Rubio-Ramírez (2006) contains a lot of what

you’ll need, but l ̸= n in this model! The IRFs of inflation, the real wage, the interest rate,

output, Tobin’s Q, real marginal cost, and labour supply, for one unit investment-specific, pref-
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erence, and labour shocks, is given below, based on calibrating parameter values to the median

estimates found in Fernández-Villaverde (2010).
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Figure 37: Investment Specific Technology Shock.
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Figure 38: Intertemporal Preference Shock.
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10. DSGE-VAR

The basic idea of the DSGE-VAR(λ) is to use the implied moments of a DSGE model as the

prior for a Bayesian VAR.

10.1. Details

Recall that, in stacked form, the VAR(p) model is written as

Y = Zβ + ϵ

where Y and Z are T × n and T × pn, and the likelihood function is proportional to

p(Y |β ,Σϵ)∝ |Σϵ|−T/2 exp

$
−

1

2
tr
'
Σ
−1
ϵ (Y

⊤Y − β⊤Z⊤Y − Y⊤Zβ + β⊤Z⊤Zβ)
(%

(204)

The hybrid DSGE-VAR differs from BVAR models considered previously in that the prior for

(β ,Σϵ) will be a function of the ‘deep’ parameters of the DSGE model.

We can think of the DSGE prior as introducing λT ‘artificial’ observations from the DSGE

model, where λ ∈ (0,∞], in a sense, weights how tight our prior belief is for the DSGE model

compared to an unrestricted VAR. As λ↗∞, we approach the dynamics implied by the DSGE

model.

The prior is expressed in terms of scaled population moments from the DSGE model. This

gives a prior of the form

p(β ,Σϵ |θ) = c−1(θ)|Σϵ|−
λT+n+1

2

× exp

$
−

1

2
tr
'
λTΣ−1

ϵ (Γ
∗
Y Y (θ)− β

⊤
Γ
∗
ZY (θ)− Γ

∗
Y Z (θ)β + β

⊤
Γ
∗
ZZ (θ)β)

(%

where c−1(θ) is a normalizing constant that ensures this density integrates to one, and Γ ∗Y Y (θ) :=

$θ [Yt Y
⊤
t ], etc, are the population moments implied by the solution to our DSGE model.

In section 8.1, we noted that the DSGE model solution can be expressed as

ξt => (θ)ξt−1 +? (θ)ϵt

Yt = @ +A ⊤ξt +B
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where ξt is the state, and> & ? are functions of the deep parameters of the DSGE model. To

form the Γ ∗ matrices above, we first compute the steady-state covariance matrix of the state

by solving the discrete Lyapunov equation

Ωss =>Ωss>⊤ +?Q?⊤

using a doubling algorithm. Then we compute the Γ ∗ matrices with

Γ
∗
Y Y (θ) =A

⊤
ΩssA +B

Γ
∗
Y Zh
(θ) =A ⊤> h

ΩssA

where h= 1,2, . . . , p.

Though an exact finite-order VAR representation doesn’t exist, define the VAR approxima-

tion to the DSGE model as

β∗(θ) = [Γ ∗ZZ (θ)]
−1
Γ
∗
ZY (θ)

Σ
∗
ϵ(θ) = Γ

∗
Y Y (θ)− Γ

∗
Y Z(θ)[Γ

∗
ZZ (θ)]

−1
Γ
∗
ZY (θ)

Given a set of values θ , the prior distribution is of the usual inverse-Wishart-Normal form:

Σϵ|θ ∼ 34
)
λTΣ∗ϵ(θ),λT − p× n, n

*

β |Σϵ,θ ∼2
)
β∗(θ),Σϵ ⊗ (λTΓ ∗ZZ (θ))

−1
*

The joint prior of the VAR parameters and DSGE parameters is then given by

p(β ,Σϵ ,θ) = p(β ,Σϵ|θ)p(θ)

where the prior p(θ) is the same as in section 8. The joint posterior distribution is factorized

similarly:

p(β ,Σϵ ,θ |Y ) = p(β ,Σϵ|Y,θ)p(θ |Y )

Note, however, that p(θ |Y ) will involve a different likelihood function for p(Y |θ) as we’ve

assumed the form (204). This will require integrating out the VAR parameters.
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The maximum likelihood estimates are

&β(θ) =
'
λTΓ ∗ZZ (θ) + Z⊤Z

(−1
[λTΓ ∗ZY + Z⊤Y ]

&Σϵ(θ) =
1

(λ+ 1)T

'
(λTΓ ∗Y Y (θ) + Y⊤Y )

(

−
1

(λ+ 1)T

'
(λTΓ ∗Y Z(θ) + Y⊤Z)(λTΓ ∗ZZ (θ) + Z⊤Z)−1(λTΓ ∗ZY (θ) + Z⊤Y )

(

The prior and likelihood are conjugate, and so the posterior distributions are of the form

Σϵ|Y,θ ∼ 34
)
(λ+ 1)T &Σϵ(θ), (1+λ)T − p× n, n

*

β |Y,Σϵ,θ ∼2
) &β(θ),Σϵ ⊗ (λTΓ ∗ZZ (θ) + Z⊤Z)−1

*

Thus, for a given θ , we draw a Σϵ from an inverse-Wishart distribution. Then, using the Σϵ

draw, we draw a vector of coefficients β using the multivariate normal distribution.

The posterior for θ is of the usual form:

p(θ |Y )∝ p(Y |θ)p(θ)

that is, proportional to the likelihood of the data times the prior. However, we use the marginal

likelihood

p(Y |θ) =
∫

p(Y |β ,Σϵ)p(β ,Σϵ |θ)d(β ,Σϵ)

instead of a state space approach, where we previously used the Kalman filter to integrate out

the unknown state. The closed form expression for this marginal likelihood is

p(Y |θ) =
p(Y |β ,Σ)p(β ,Σ|θ)

p(β ,Σ|Y )

=
|λTΓ ∗ZZ (θ) + Z⊤Z |−

n
2 |(λ+ 1)T &Σϵ(θ)|−

(λ+1)T−k
2

|λTΓ ∗ZZ(θ)|
− n

2 |λTΣ∗ϵ(θ)|
− λT−k

2

×
(2π)−nT/22

n((λ+1)T−k)
2

∏n
i=1 Γ [((λ+ 1)T − k+ 1− i)/2]

2
n(λT−k)

2

∏n
i=1 Γ [(λT − k+ 1− i)/2]

where k = n× p. Other than using a different likelihood function p(Y |θ), the RWM algorithm

for θ remains the same.
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10.2. Estimate DSGE-VAR (DSGEVAR)

DSGEVAR(dsgedata,chains=1,cores=1,lambda=Inf,p=2,

constant=FALSE,ObserveMat,initialvals,partomats,

priorform,priorpars,parbounds,parnames=NULL,

optimMethod="Nelder-Mead",

optimLower=NULL,optimUpper=NULL,

optimControl=list(),

IRFs=TRUE,irf.periods=20,scalepar=1,

keep=50000,burnin=10000,

tables=TRUE)

• dsgedata

A matrix or data frame of size T × j containing the data series used for estimation.

Note: in order to identify the structural shocks, there must be the same number of

observable series as there are shocks in the DSGE model.

• chains

A positive integer value indicating the number of MCMC chains to run.

• cores

A positive integer value indicating the number of CPU cores that should be used for

estimation. This number should be less than or equal to the number of chains. Do not

allocate more cores than your computer can safely handle!

• lambda

The proportion of DSGE dummy data to actual data. Acceptable values lie in the interval

[ j × (p+ 1)/T,∞].

• p

The number of lags to include of each variable. The default value is 2.

• constant

A logical statement on whether to include a constant vector in the model. The default

is ‘FALSE’, and the alternative is ‘TRUE’.
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• ObserveMat

The (m+n+ k)× j observable matrixA that maps the state variables to the observable

series in the measurement equation.

• initialvals

Initial values to begin the optimization routine.

• partomats

This is perhaps the most important function input.

‘partomats’ should be a function that maps the deep parameters of the DSGE model to the

matrices of a solution method, and contain: a k × k matrix labelled ‘shocks’ containing

the variances of the structural shocks; a j × 1 matrix labelled ‘MeasCons’ containing

any constant terms in the measurement equation; and a j× j matrix labelled ‘MeasErrs’

containing the variances of the measurement errors..

• priorform

The prior distribution of each parameter.

• priorpars

The parameters of the prior densities.

For example, if the user selects a Gaussian prior for a parameter, then the first entry will

be the mean and the second its variance.

• parbounds

The lower- and (where relevant) upper-bounds on the parameter values. ‘NA’ values are

permitted.

• parnames

A character vector containing labels for the parameters.

• optimMethod

TThe optimization algorithm used to find the posterior mode. The user may select: the

“Nelder-Mead” simplex method, which is the default; “BFGS”, a quasi-Newton method;

“CG” for a conjugate gradient method; “L-BFGS-B”, a limited-memory BFGS algorithm

with box constraints; or “SANN”, a simulated-annealing algorithm.
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See ?optim for more details.

If more than one method is entered, e.g., c(Nelder-Mead, CG), optimization will pro-

ceed in a sequential manner, updating the initial values with the result of the previous

optimization routine.

• optimLower

If optimMethod="L-BFGS-B", this is the lower bound for optimization.

• optimUpper

If optimMethod="L-BFGS-B", this is the upper bound for optimization.

• optimControl

A control list for optimization. See ?optim in R for more details.

• IRFs

Whether to calculate impulse response functions.

• irf.periods

If IRFs=TRUE, then use this option to set the IRF horizon.

• scalepar

The scaling parameter, c, for the MCMC run.

• keep

The number of replications to keep. If keep is set to zero, the function will end with a

normal approximation at the posterior mode.

• burnin

The number of sample burn-in points.

• tables

Whether to print results of the posterior mode estimation and summary statistics of the

MCMC run.

The function returns an object of class ‘DSGEVAR’, which contains:

• Parameters
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A matrix with ‘keep × chains’ number of rows that contains the estimated, post sample

burn-in parameter draws.

• Beta

An array of size j · p×m× (keep · chains) which contains the post burn-in draws of β .

• Sigma

An array of size j × j × (keep · chains) which contains the post burn-in draws of Σϵ.

• DSGEIRFs

A four-dimensional object of size irf.periods×(m+n+k)×n×(keep ·chains) containing

the impulse response calculations values for the DSGE model. The first m refers to

responses to the last m shock.

• DSGEVARIRFs

A four-dimensional object of size irf.periods× j×n×(keep·chains) containing the impulse

response function calculations for the VAR. The last m refers to the structural shock.

• parMode

Estimated posterior mode parameter values.

• ModeHessian

The Hessian computed at the posterior mode for the transformed parameters.

• logMargLikelihood

The log marginal likelihood from a Laplacian approximation at the posterior mode.

• AcceptanceRate

The acceptance rate of the chain(s).

• RootRConvStats

Gelman’s
E

R-between-chain convergence statistics for each parameter. A value close 1

would signal convergence.

• ObserveMat

The user-suppliedA matrix from the Kalman filter recursion.

• data

The data used for estimation.
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10.3. Example

To illustrate the DSGE-VAR in practice, we continue with the basic New Keynesian model

discussed in section 9.2. We set λ, the relative number of DSGE dummy observations to

actual data, to 1, and set the number of lags p to 4. The other inputs remain the same as

in the estimation example in section 9.2. Again, the two chains are set to run in parallel by

setting cores=2.

NKMVAR <- DSGEVAR(dsgedata,chains=2,cores=2,lambda=1,p=4,

FALSE,ObserveMat,initialvals,partomats,

priorform,priorpars,parbounds,parnames,

optimMethod=c("Nelder-Mead","CG"),

optimLower=NULL,optimUpper=NULL,

optimControl=list(maxit=20000,reltol=(10^(-12))),

IRFs=TRUE,irf.periods=5,

scalepar=0.28,keep=25000,burnin=25000)

Trying to solve the model with your initial values... Done.

Beginning optimization, Tue Jul 8 12:10:28 2014.

Using Optimization Method: Nelder-Mead.

Using Optimization Method: CG. Change in the log posterior: 4.549311.

Optimization over, Tue Jul 8 12:11:00 2014.

Optimizer Convergence Code: 0; successful completion.

Optimizer Iterations:

function gradient

1036 377

Log Marginal Likelihood: -534.7842.

Parameter Estimates and Standard Errors (SE) at the Posterior Mode:
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Estimate SE

Alpha 0.3315737 0.049878827

Beta 0.9954120 0.004150994

Vartheta 5.0516123 0.993553685

Theta 0.7259380 0.074283768

Eta 1.0012686 0.099407198

Phi 0.9835030 0.300263714

Phi.Pi 1.5028955 0.099196808

Phi.Y 0.6962982 0.099599178

Rho.A 0.9432951 0.032108263

Rho.V 0.7098416 0.083266913

Sigma.T 2.1122325 0.639841680

Sigma.M 0.8941240 0.170289023

Trying to Compute DSGE-VAR Prior at the Posterior Mode... Done.

Beginning DSGE-VAR MCMC run, Tue Jul 8 12:11:00 2014.

MCMC run finished, Tue Jul 8 12:13:14 2014.

Acceptance Rate: Chain 1: 0.37124; Chain 2: 0.36968.

Root-R Chain-Convergence Statistics:

Alpha Beta Vartheta Theta Eta Phi Phi.Pi Phi.Y Rho.A

Stat: 0.99999 1.000055 1.000895 0.9999905 0.99999 1.000623 0.99999 1.000055 1.000895

Rho.V Sigma.T Sigma.M

Stat: 0.9999905 0.99999 1.000623

Parameter Estimates and Standard Errors:

Posterior.Mode SE.Mode Posterior.Mean SE.Posterior

Alpha 0.3315737 0.049878827 0.3313195 0.050442362

Beta 0.9954120 0.004150994 0.9953925 0.003083174
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Vartheta 5.0516123 0.993553685 5.0056614 1.001814050

Theta 0.7259380 0.074283768 0.7190511 0.075485626

Eta 1.0012686 0.099407198 0.9942086 0.100569641

Phi 0.9835030 0.300263714 0.9820292 0.305940901

Phi.Pi 1.5028955 0.099196808 1.5036051 0.099788238

Phi.Y 0.6962982 0.099599178 0.6935541 0.101125593

Rho.A 0.9432951 0.032108263 0.9420066 0.027144457

Rho.V 0.7098416 0.083266913 0.7014396 0.084659980

Sigma.T 2.1122325 0.639841680 2.4533029 1.029426769

Sigma.M 0.8941240 0.170289023 0.9182360 0.223114129

Computing DSGE IRFs now... Done.

Starting DSGE-VAR IRFs, Tue Jul 8 12:13:27 2014.

DSGEVAR IRFs finished, Tue Jul 8 12:13:51 2014.

A check of the parameter values at the posterior mode is given by

modecheck(NKMVAR,1000,1,plottransform=FALSE,save=TRUE)

which is illustrated in figure 40. The marginal posterior distributions of the DSGE parameters

are illustrated in figure 41, with input syntax:

plot(NKMVAR,save=TRUE)

Impulse response functions are called in a similar way to estimated DSGE models. For com-

parison, the function will plot IRFs for both the DSGE model and the DSGE-VAR (purple and

solid lines for the former, green and dashed for the latter).

varnames <- names(USMacroData)[c(2,4)]

IRF(NKMVAR,varnames=varnames,save=TRUE)

(See figures 42 & 43.) Finally, forecasts of the observable series can be generated using

forecast(NKMVAR,5,backdata=5,save=TRUE)

which is illustrated in figure 44.
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Figure 40: Plot of the Log-Posterior at the Posterior Mode.
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Figure 41: Posterior distributions of θ .



177

-0.6

-0.4

-0.2

0.0

0 10 20 30 40
Horizon

IN
FL
AT

IO
N

-0.6

-0.3

0.0

0 10 20 30 40
Horizon

FE
D
FU

N
D
S

Figure 42: Shock to Technology.
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Figure 43: Shock to Monetary Policy.
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A Calculating Impulse Response Functions for BVARs

BVAR-related Impulse response calculations in BMR use a Choleski decomposition to identify

the contemporaneous nature of structural shocks. The Choleski decomposition for a symmetric

positive-definite matrix Σ ∈ !d×d is Σ = LL⊤, where L is lower-triangular, a particular case

of a LU decomposition.12 The ordering of variables is important for identification, so take

necessary steps to justify your ordering, and try different combinations! One exception to

note is the Minnesota prior, where, by construction, Σ is diagonal.

For illustrative purposes, let’s use a bi-variate VAR(2) model, with coefficient matrices as

given in the examples section of the BVAR models; I rewrite them here for convenience:

β =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0.5 0.2

0.28 0.7

−0.39 −0.1

0.1 0.05

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, Σ =

⎡

⎢⎢
⎣

1 0

0 1

⎤

⎥⎥
⎦

When Σ is diagonal, Li,i =
a
Σi,i, and as Σ= "2, we have Σ= L = L⊤. Define Ψ(ℓ) as a m×m

matrix containing the response of our variables to shocks in Σ. Let E(ℓ) be a p ·m×m matrix

containing the last p IRF matrices, Ψ(ℓ−1), Ψ(ℓ−2), . . ., Ψ(ℓ− p), stacked with the Ψ(ℓ−1)

being the first block and Ψ(ℓ− p) being last.

To begin, Ψ(1) = L and E(1) = 04×2. To find Ψ(2), first build E(2), which is

⎡

⎢⎢
⎣
Ψ(1)

02×2

⎤

⎥⎥
⎦,

E(2) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0

0 1

0 0

0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

12For a non-singular Hermitian matrix Σ ∈ %d×d , we can factorise as Σ = LU , where L and U are lower- and
upper-triangular d × d matrices, respectively
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To find Ψ(2), we premultiply E(2) by β⊤,

Ψ(2) =

⎡

⎢⎢
⎣

0.5 0.28 −0.39 0.1

0.2 0.7 −0.1 0.5

⎤

⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0

0 1

0 0

0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢
⎣

0.5 0.28

0.2 0.7

⎤

⎥⎥
⎦

E(3) is now

E(3) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0.5 0.28

0.2 0.7

1 0

0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

To find Ψ(3), we premultiply E(3) by β⊤, just as before,

Ψ(3) =

⎡

⎢⎢
⎣

0.5 0.28 −0.39 0.1

0.2 0.7 −0.1 0.5

⎤

⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0.5 0.28

0.2 0.7

1 0

0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢
⎣
−0.084 0.436

0.140 0.596

⎤

⎥⎥
⎦

And so on, for as many points as the user desires. We interpret the elements of Ψ(ℓ) as follows:

the columns are the ‘shocks from’ and the rows make up the ‘responses to’ part of IRFs.

For example, if our data are quarterly, and we are looking at the Ψ(3)matrix: the element

Ψ1,1 = −0.084 gives the response of the first variable to a one standard deviation shock to the

first variable after 2 quarters; the element Ψ1,2 = 0.436 is the response of the first variable to a

one standard deviation shock to the second variable after 2 quarters; the elementΨ2,1 = 0.140

is the response of the second variable to a one standard deviation shock to the first variable

after 2 quarters; and the element Ψ2,2 = 0.596 is the response of the second variable to a one
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standard deviation shock to the second variable after 2 quarters.
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B Specifying Full Matrix Priors in BMR

This section details how to specify full matrix priors on both the mean and covariance matrices.

B1. Prior Mean of the Coefficients

For the BVARM, BVARS, and BVARW functions, we can simplify the process of selecting a prior

mean of each coefficient by only looking at the first own-lags, and setting all other coefficients

to zero. However, the user may prefer to, say, place a non-zero prior on the intercepts.

For a bi-variate VAR(2) model with a constant Φ, the β matrix is formed as follows,

β =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Φ1 Φ2

β
(1,1)
1 β

(1,2)
1

β
(2,1)
1 β

(2,2)
1

β
(1,1)
2 β

(1,2)
2

β
(2,1)
2 β

(2,2)
2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

where β
(i, j)
p is the coefficient corresponding to the effect of variable i on variable j for the pth

lag, e.g.,

Y1,t = Φ1 + β
(1,1)
1 · Y1,t−1 + β

(2,1)
1 · Y2,t−1 + β

(1,1)
2 · Y1,t−2 + β

(2,1)
2 · Y2,t−2 + ε1,t

Y2,t = Φ2 + β
(1,2)
1 · Y1,t−1 + β

(2,2)
1 · Y2,t−1 + β

(1,2)
2 · Y1,t−2 + β

(2,2)
2 · Y2,t−2 + ε2,t

For example, if we wished to specify a mean of 3 on both the constant terms Φ, a coeffi-

cient of 0.7 on the first own-lag of Y1 and a coefficient of 0.4 on the first own-lag of Y2 with

everything else as zero, the code is

coefprior <- rbind(c( 3, 3),

c(0.7, 0),

c( 0,0.4),

c( 0, 0),

c( 0, 0))
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Then we can use this for estimation with, say, a Minnesota prior:

testbvarm <- BVARM(bvardata,coefprior,p=2,constant=TRUE,irf.periods=20,

keep=10000,burnin=5000,VType=1,

HP1=0.5,HP2=0.5,HP3=4)

Remember, if you’re doing something similar with BVARS (steady-state prior), there are no

constants Φ, as we’re modelling the unconditional mean (Ψ) instead.
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B2. Prior Covariance Matrix

For those who wish to specify a full prior on the covariance matrix of β , or, for example, the

location matrix of Σ, BMR allows the user to do so. Ξβ is based on the vectorised version of

β , where, using our previous VAR(2) example,

vec(β) =

I

Φ1 β (1,1)
1 β (2,1)

1 β (1,1)
2 β (2,1)

2 Φ2 β (1,2)
1 β (2,2)

1 β (1,2)
2 β (2,2)

2

J⊤

and, for simplicity, a diagonal Ξβ is

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

V (Φ1) 0 0 0 0 0 0 0 0 0

0 V (β
(1,1)
1 ) 0 0 0 0 0 0 0 0

0 0 V (β
(2,1)
1 ) 0 0 0 0 0 0 0

0 0 0 V (β (1,1)
2 ) 0 0 0 0 0 0

0 0 0 0 V (β (2,1)
2 ) 0 0 0 0 0

0 0 0 0 0 V (Φ2) 0 0 0 0

0 0 0 0 0 0 V (β
(1,2)
1 ) 0 0 0

0 0 0 0 0 0 0 V (β
(2,2)
1 ) 0 0

0 0 0 0 0 0 0 0 V (β
(1,2)
2 ) 0

0 0 0 0 0 0 0 0 0 V (β
(2,2)
2 )

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

This is the required format for specifying a full Ξ prior. If the user also opts to specify covari-

ance terms, ensure that the matrix is symmetric.
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C Class-related Functions

Several functions in BMR are class-specific, including the forecast, IRF and plot commands.

C1. Forecast

C1.1. BVARM, BVARS, BVARW, DSGEVAR

forecast(obj,periods=20,shocks=TRUE,plot=TRUE,

percentiles=c(.05,.50,.95),useMean=FALSE,

backdata=0,save=FALSE,height=13,width=11)

• obj

An object of class ‘BVARM’, ‘BVARS’, or ‘BVARW’.

• periods

The forecast horizon.

• shocks

Whether to include uncertainty about future shocks when calculating the distribution

of forecasts.

• plot

Whether to plot the forecasts.

• percentiles

The percentiles of the distribution the user wants to use.

• useMean

Whether the user would prefer to use the mean of the forecast distribution rather than

the middle value in ‘percentiles’.

• backdata

How many ’real’ data points to plot before plotting the forecast. A broken line will

indicate whether the ‘real’ data ends and the forecast begins.

• save

Whether to save the plots.
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• height

If save=TRUE, use this to set the height of the plot.

• width

If save=TRUE, use this to set the width of the plot.

The function returns a list containing

• MeanForecast

The mean values of the forecast.

• PointForecast

The values of the point forecast.

• Forecasts

An array containing all of the calculated forecasts.

C1.2. CVAR

forecast(obj,periods=20,plot=TRUE,confint=0.95,

backdata=0,save=FALSE,height=13,width=11)

• obj

An object of class ‘CVAR’.

• periods

The forecast horizon.

• plot

Whether to plot the forecasts.

• confint

The confidence interval to use.

• backdata

How many ’real’ data points to plot before plotting the forecast. A broken line will

indicate whether the ‘real’ data ends and the forecast begins.
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• save

Whether to save the plots.

• height

If save=TRUE, use this to set the height of the plot.

• width

If save=TRUE, use this to set the width of the plot.

The function returns a list containing

• PointForecast

The values of the point forecast.

• Forecasts

The values of the point forecast and user-selected percentiles.

C1.3. EDSGE

forecast(obj,periods=20,shocks=TRUE,plot=TRUE,

percentiles=c(.05,.50,.95),useMean=FALSE,

backdata=0,save=FALSE,height=13,width=11)

• obj

An object of class ‘EDSGE’.

• periods

The forecast horizon.

• plot

Whether to plot the forecasts.

• percentiles

The percentiles of the distribution the user wants to use.

• useMean

Whether the user would prefer to use the mean of the forecast distribution rather than

the middle value in ‘percentiles’.
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• backdata

How many ’real’ data points to plot before plotting the forecast. A broken line will

indicate whether the ‘real’ data ends and the forecast begins.

• save

Whether to save the plots.

• height

If save=TRUE, use this to set the height of the plot.

• width

If save=TRUE, use this to set the width of the plot.

The function returns a list containing

• MeanForecast

The mean values of the forecast.

• PointForecast

The values of the point forecast.

• Forecasts

An array containing all of the calculated forecasts.

C2. IRF

C2.1. BVARM, BVARS, BVARW, CVAR

IRF(obj,percentiles=c(.05,.50,.95),save=TRUE,height=13,width=13)

• obj

An object of class ‘BVARM’, ‘BVARS’, ‘BVARW’, or ‘CVAR’.

• percentiles

The percentiles of the distribution the user wants to use.

• save

Whether to save the plots.
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• height

If save=TRUE, use this to set the height of the plot.

• width

If save=TRUE, use this to set the width of the plot.

C2.2. BVARTVP

IRF(obj,whichirfs=NULL,percentiles=c(.05,.50,.95),save=TRUE,height=13,width=13)

• obj

An object of class ‘BVARTVP’.

• percentiles

The percentiles of the distribution the user wants to use.

• whichirfs

Which IRFs to plot. The default is all of those which the user chose to calculate during

estimation.

• save

Whether to save the plots.

• height

If save=TRUE, use this to set the height of the plot.

• width

If save=TRUE, use this to set the width of the plot.

C2.3. DSGEVAR

IRF(obj,varnames=NULL,percentiles=c(.05,.50,.95),

save=TRUE,height=13,width=13)

C2.4. EDSGE

IRF(obj,ObservableIRFs=TRUE,varnames=NULL,percentiles=c(.05,.50,.95),

save=TRUE,height=13,width=13)
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• obj

An object of class ‘EDSGE’.

• ObservableIRFs

Whether to plot the IRFs relating to the state, or the implied IRFs of the observable

series. Remember, we compute the ℓ-step ahead IRF for the ȷ-th shock as

> ℓ? [01×(m+n+ ȷ−1) σȷ 01×( ȷ−1)]
⊤

where > 0 = "(m+n+k). The observable IRFs are then

A ⊤> ℓ? [01×(m+n+ ȷ−1) σȷ 01×( ȷ−1)]
⊤

• varnames

A character vector with the names of the variables.

• percentiles

The percentiles of the distribution the user wants to use.

• save

Whether to save the plots.

• height

If save=TRUE, use this to set the height of the plot.

• width

If save=TRUE, use this to set the width of the plot.

C2.5. SDSGE

IRF(obj,shocks,irf.periods=20,varnames=NULL,plot=TRUE,

save=FALSE,height=13,width=13)

• obj

An object of class ‘SDSGE’.

• shocks
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A numeric vector containing the standard deviations of the shocks.

• irf.periods

The horizon of the IRFs.

• varnames

A character vector with the names of the variables.

• plot

Whether to plot the IRFs.

• save

Whether to save the plots.

• height

If save=TRUE, use this to set the height of the plot.

• width

If save=TRUE, use this to set the width of the plot.

C3. Mode Check

C3.1. DSGEVAR, EDSGE

modecheck(obj,gridsize=1000,scalepar=NULL,plottransform=FALSE,

save=FALSE,height=13,width=13)

• obj

An object of class ‘EDSGE’ or ‘DSGEVAR’.

• gridsize

The number of grid points to use when calculating the log posterior around the mode

values.

• scalepar

A value to replace the scale parameter from estimation (‘c’) when plotting the log pos-

terior.
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• plottransform

Whether to plot the transformed values (i.e., such that the support is unbounded), or to

plot the untransformed values.

• save

Whether to save the plots.

• height

If save=TRUE, use this to set the height of the plot.

• width

If save=TRUE, use this to set the width of the plot.

C4. Plot

C4.1. BVARM, BVARS, BVARW

plot(obj,type=1,plotSigma=TRUE,save=TRUE,height=13,width=13)

• obj

An object of class ‘BVARM’, ‘BVARS’, or ‘BVARW’.

• type

An integer value indicating the plot style; type=1 will produce a histogram, while

type=2 will use smoothed densities.

• plotSigma

Whether to plot the covariance terms.

• save

Whether to save the plots.

• height

If save=TRUE, use this to set the height of the plot.

• width

If save=TRUE, use this to set the width of the plot.
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C4.2. BVARTVP

plot(obj,percentiles=c(.05,.50,.95),save=FALSE,height=13,width=13)

• obj

An object of class ‘BVARTVP’.

• percentiles

The percentiles of the distribution the user wants to use.

• save

Whether to save the plots.

• height

If save=TRUE, use this to set the height of the plot.

• width

If save=TRUE, use this to set the width of the plot.

C4.3. DSGEVAR, EDSGE

plot(obj,BinDenom=40,save=FALSE,height=13,width=13)

• obj

An object of class ‘EDSGE’.

• binDenom

The ‘bin’ size of the histograms used to plot the estimated parameters is calculated by

dividing the range of values by ‘binDenom’. ggplot2 will use 30 as its default, but BMR

sets the default to 40.

• save

Whether to save the plots.

• height

If save=TRUE, use this to set the height of the plot.

• width

If save=TRUE, use this to set the width of the plot.
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D Example of a Parameter to Matrices Function (partomats)

The code below, used when estimating the basic New-Keynesian model, illustrates the required

format of a ‘partomats’ function the user provides to the EDSGE function in BMR. The user-

written function maps the deep parameters of the DSGE model to the 12 matrices of Uhlig’s

method, along with a ‘shocks’ matrix that defines the covariance matrix of the exogenous

shocks, a vector of intercept terms in the measurement equation, and the covariance matrix

of the measurement errors.

partomats <- function(parameters){

alpha <- parameters[1]

beta <- parameters[2]

vartheta <- parameters[3]

theta <- parameters[4]

#

eta <- parameters[5]

phi <- parameters[6]

phi_pi <- parameters[7]

phi_y <- parameters[8]

rho_a <- parameters[9]

rho_v <- parameters[10]

#

sigmaT <- (parameters[11])^2

sigmaM <- (parameters[12])^2

#

BigTheta <- (1-alpha)/(1-alpha+alpha*vartheta)

kappa <- (((1-theta)*(1-beta*theta))/(theta))*BigTheta*((1/eta)+((phi+alpha)/(1-alpha)

#

psi <- (eta*(1+phi))/(1-alpha+eta*(phi + alpha))

#

A <- matrix(0,nrow=0,ncol=0)

B <- matrix(0,nrow=0,ncol=0)

C <- matrix(0,nrow=0,ncol=0)
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D <- matrix(0,nrow=0,ncol=0)

#

#Order: yg y, pi, rn, i, n

F <- rbind(c( -1, 0, -eta, 0, 0, 0),

c( 0, 0, -beta, 0, 0, 0),

c( 0, 0, 0, 0, 0, 0),

c( 0, 0, 0, 0, 0, 0),

c( 0, 0, 0, 0, 0, 0),

c( 0, 0, 0, 0, 0, 0))

#

G <- rbind(c( 1, 0, 0, -1*eta, eta, 0),

c( -kappa, 0, 1, 0, 0, 0),

c( -phi_y, 0, -phi_pi, 0, 1, 0),

c( 0, 0, 0, 1, 0, 0),

c( 0, 1, 0, 0, 0, -(1-alpha)),

c( 1, -1, 0, 0, 0, 0))

#

H <- rbind(c( 0, 0, 0, 0, 0, 0),

c( 0, 0, 0, 0, 0, 0),

c( 0, 0, 0, 0, 0, 0),

c( 0, 0, 0, 0, 0, 0),

c( 0, 0, 0, 0, 0, 0),

c( 0, 0, 0, 0, 0, 0))

#

J <- matrix(0,nrow=0,ncol=0)

K <- matrix(0,nrow=0,ncol=0)

#

L <- matrix(c( 0, 0,

0, 0,

0, 0,

0, 0,

0, 0,
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0, 0 ),ncol=2,byrow=T);

#

M41 <- -(1/eta)*psi*(rho_a - 1)

M<- matrix(c( 0, 0,

0, 0,

0, -1,

M41, 0,

-1, 0,

psi, 0),ncol=2,byrow=T)

#

N = matrix(c( rho_a, 0,

0, rho_v),nrow=2)

#

shocks <- matrix(c(sigmaT, 0,

0, sigmaM),nrow=2)

#

ObsCons <- matrix(0,nrow=2,ncol=1)

MeasErrs <- matrix(0,nrow=2,ncol=2)

#

return=list(A=A,B=B,C=C,D=D,F=F,G=G,H=H,J=J,K=K,L=L,M=M,N=N,shocks=shocks,ObsCons=ObsC

}


